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ABSTRACT

We present a new approach for correcting instrumental polarization by modeling the non-depolarizing

effects of a complex series of optical elements to determine physically realizable Mueller matrices.

Provided that the Mueller matrix of the optical system can be decomposed into a general elliptical

diattenuator and general elliptical retarder, it is possible to model the cross-talk between both the

polarized and unpolarized states of the Stokes vector and then use the acquired science observations to

determine the best-fit free parameters. Here, we implement a minimization for solar spectropolarimetric

measurements containing photospheric spectral lines sensitive to the Zeeman effect using physical

constraints provided by polarized line and continuum formation. This model-based approach is able

to provide an accurate correction even in the presence of large amounts of polarization cross-talk and

conserves the physically meaningful magnitude of the Stokes vector, a significant improvement over

previous ad hoc techniques.

Keywords: Spectropolarimetry (1973) — Calibration (2179) — Solar physics (1476) — Solar magnetic

fields (1503)

1. INTRODUCTION

In the field of solar physics, spectropolarimetry at

optical wavelengths is a critical tool used to infer the

magnetic field vector from the photosphere to chromo-

sphere and corona. The Zeeman effect, Paschen-Bach

effect, Hanle effect, atomic level polarization, and scat-

tering polarization produce polarized signatures in spec-

tral lines as well as continuum emission in the case of

scattering polarization (Landi Degl’Innocenti & Landolfi

2004). Accurate measurements of linear and circular po-

larization and the total intensity of light are critical for

recovery of the strength and direction of the magnetic

field along with other diagnostics of the solar plasma us-

ing spectropolarimetric inversions, which are now main-

stays of solar physics (del Toro Iniesta & Ruiz Cobo
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2016). There are many instruments designed specifi-

cally for the measurement of these polarized diagnostics.

Iglesias & Feller (2019) give an extensive list of recently
operating and upcoming instruments.

Instrument and telescope optical systems cause ex-

change between polarized and unpolarized light, and be-

tween linear and circular polarization states. Reflection

from surfaces, transmission through media, and inter-

action with coatings can modify the polarization state

of light in different ways dependent on wavelength and

angle of incidence. Astronomical instruments often re-

quire changes in optical geometry during observations

to maintain tracking and orientation of the field of view,

causing changes in the polarization response of the op-

tical system. Telescope mirrors may be recoated to im-

prove transmission every few years, and the polarization

performance of optical elements may change after re-

coating (see Harrington et al. 2021), although detailed

measurements show that even unprotected aluminum
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coatings are stable after initial buildup of the oxide layer

immediately after deposition (van Harten et al. 2009).

There are various approaches to polarimetric calibra-

tion that can combine theoretical modeling, measure-

ments using calibration optics, direct measurements of

sources with well known or assumed polarization prop-

erties, and semi-empirical modeling (see, e.g. Harrington

& Sueoka 2017; Elmore et al. 1992; Collados 2003; Har-

rington et al. 2011; Beck et al. 2005). However, it is

not always possible to have a well known or well cal-

ibrated telescope and instrument system. Polarization

cross-talk may remain even after calibration measure-

ments and polarization models have been applied due to

uncertainty in the parameters of the calibration optics

or uncorrected sections of the optical path, for example.

No single method for polarization calibration is with-

out challenges, and it is desirable to have an additional

method to diagnose and remove residual instrumental

polarization or cross-validate results. There are several

previously published approaches for the removal of resid-

ual instrumental polarization from spectropolarimetry

that make use of the physical properties in the solar ob-

servations themselves (i.e. ad hoc corrections, Novem-

ber 1991; Sanchez Almeida & Lites 1992; Kuhn et al.

1994; Schlichenmaier & Collados 2002; Collados 2003;

Derks et al. 2018). The primary goal of these tech-

niques is to determine and correct cross-talk between

linear and circular polarization states. Some of these

techniques also remove the cross-talk between polarized

and unpolarized states, this technique is stated clearly

in Sanchez Almeida & Lites (1992).

These ad hoc correction techniques take advantage

of Zeeman-split photospheric absorption lines which are

considered to form in a state near local thermodynamic

equilibrium and, in the ideal case, produce very well

understood line profiles (Unno 1956; Degl’Innocenti &

del Toro Iniesta 1998). Although there are a few excep-

tions (i.e. Derks et al. 2018), the commonly used spec-

tral lines display the anomalous Zeeman effect, which

produces a three component line profile. For a magnetic

field that is transverse with respect to the observer’s line

of sight, the line will show a linearly polarized profile,

symmetric about the line center, with a central compo-

nent and wings polarized at 90◦ with respect to each

other. For a magnetic field oriented along the observer’s

line of sight, the line will show a profile with circular

polarization, anti-symmetric about the line center, with

one wing showing left circular polarization and the other

showing right circular polarization. Intermediate orien-

tations of the magnetic field will show a combination of

linearly and circularly polarized profiles with these same

symmetry properties.

As a first step, the techniques of Sanchez Almeida &

Lites (1992), Kuhn et al. (1994), and Schlichenmaier &

Collados (2002) assume that the continuum polariza-

tion is zero and remove the cross-talk from the unpo-

larized intensity state into the polarized states based on

their continuum values. Collados (2003) makes no ex-

plicit assumption about the continuum polarization, but

a similar correction would be necessary unless the inten-

sity cross-talk was negligible. The methods then exploit

the symmetry and anti-symmetry properties of Zeeman-

split lines to determine the amount of polarization ex-

changed by the optical system assuming that on aver-

age the Sun produces ideal polarized profiles. Sanchez

Almeida & Lites (1992) assume that the circularly po-

larized profile is symmetric about the line core, while

Collados (2003) assumes that the net circular polariza-

tion is equal to zero. Kuhn et al. (1994) incorporate

feature-specific information by assuming the unshifted

central component of the line should not show any cir-

cular polarization signal in cases where the separation

of the three components of the Zeeman-split line is very

large, i.e. in a sunspot umbra. All four methods as-

sume that linear and circular polarization signals are

statistically uncorrelated over the line profile. Above

all, these techniques assume that the amount of polar-

ization cross-talk is small.

Each of the above methods solves a linear system of

equations describing the transformation from linear to

circular polarization and from circular to linear polar-

ization using some optimization technique. Crucially, all

the above methods find the coefficients of the circular-

to-linear transform as if they were independent from the

linear-to-circular transform. On the contrary, physical

models for the polarization cross-talk induced by differ-

ent kinds of optical elements show that the cross-talk

terms between polarization states and to unpolarized

light are not independent, but instead typically linked

by some simple functional form.

In this paper we present a model-based approach for

characterizing and correcting instrumental polarization

that builds on previous ad hoc techniques. Crucially, our

model is based on the fact that any linear combination of

non-depolarizing optical elements can be represented as

an equivalent system composed of just an elliptical diat-

tenuator and an elliptical retarder. The reduced param-

eter set fully embodies the physics of polarized transfer

within the optical system and therefore provides a more

robust correction compared to the previous methods. In

particular, our method performs well even in the pres-

ence of the high levels of polarization cross-talk that

are often found in real telescope systems. The polariza-

tion modeling, measurement, and calibration efforts for
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the Daniel K. Inouye Solar Telescope have demonstrated

that the polarization properties of optics are well de-

scribed using only the few parameters that describe the

diattenuation and retardance of the reflective or trans-

missive optic (Harrington & Sueoka 2017; Harrington

et al. 2019). Those efforts provide strong real-world ex-

perimental validation for our method, in addition to its

sound theoretical underpinnings.

The rest of the paper is outlined as follows. In Sec-

tion 2 we provide motivation for the physical approach

we have selected. In Section 3 we present our algorithm

for determining the parameters. In Section 4 we demon-

strate our technique by using a pristine dataset with a

known level of polarization cross-talk contamination. To

put our ad hoc technique in context with those of previ-

ous authors, we also apply a combination of techniques

from Sanchez Almeida & Lites (1992) and Kuhn et al.

(1994). In Section 5 we discuss the results of our tech-

nique and explore some weaknesses of our technique and

the previous ad hoc techniques. In Section 6 we pro-

vide conclusions and discuss further applications for the

model-based approach.

2. APPROACH

In the Stokes-Mueller formalism, any polarized state

of light can be represented by the 4-element Stokes vec-

tor.

~S =


I

Q

U

V

 (1)

I is the total of all polarized and unpolarized light. Q

and U represent the linear polarization. Positive Q is

oriented at 0◦ or 180◦ from a reference axis normal to the
propagation direction while negative Q is oriented at 90◦

or 270◦. Positive U is oriented at 45◦ or 225◦ while neg-

ative U is oriented at 135◦ or 315◦. V represents the cir-

cular polarization, where right hand (counter clockwise)

circular polarization is positive and left hand (clockwise)

circular polarization is negative.

A linear transformation of a Stokes vector is repre-

sented by a 4 × 4 Mueller matrix which carries some

initial vector ~S to a transformed vector ~S′:

~S′ = M~S (2)

where

M =


m00 m10 m20 m30

m01 m11 m21 m31

m02 m12 m22 m32

m03 m13 m23 m33

 . (3)

It is possible to represent many kinds of optical processes

using a Mueller matrix, including rotation, retardance,

diattenuation, and depolarization. Extensive examples

are given in Chipman et al. (2018). There are a vari-

ety of tests determine if any given matrix represents a

physically admissible collection of optical elements (e.g.

Kostinski et al. 1993; Givens & Kostinski 1993).

The total Mueller matrix for a series of optical el-

ements can be constructed by the matrix product of

the individual Mueller matrices for each optical element

(Mi) and rotation Mueller matrices (Ri) that are used to

change the Stokes coordinate frame between elements,

for example:

Mtotal = R3M3R23M2R12M1R1 (4)

The new Mueller matrix is built from right to left as each

new matrix operates on the Stokes vector resulting from

the operations done before. In general, these operations

do not commute but are associative.

The polarization properties of optics found in tele-

scopes and other imaging systems are typically well de-

scribed by three physical processes: reflectance or trans-

mittance, diattenuation, and retardance. Non-uniform

scattering and/or coatings, as well as powered optics,

can introduce depolarization, but the associated 9 de-

grees of freedom are typically small and often ignored

(Chipman et al. 2018; Harrington et al. 2021). Indi-

vidual optics are subsequently modeled very well with

only diattenuation and retardance, although they may

have complex behavior as a function of wavelength, spa-

tial dependence over the optic, or dependence on the

angle of incidence (e.g Harrington et al. 2019). These

are “non-depolarizing” Mueller matrices and they have

special properties. Any combination of non-depolarizing

Mueller matrices are also non-depolarizing (Gil & Bern-

abeu 1986), and therefore, a series of optical elements

composed of many optics of this type can still be mod-

eled with only diattenuation and retardance.

Just as it is possible to produce a single Mueller matrix

through matrix multiplication, it is possible to decom-

pose an arbitrary Mueller matrix into separate Mueller

matrices. Non-depolarizing Mueller matrices can be de-

composed into two parts: a general elliptical retarder

and a general elliptical diattenuator (Gil & San José

2016), where the decomposition can be done in either

order:

Msys = MPMR = MRMD (5)

MP and MD denote the Mueller matrix for a left-

equivalent and right-equivalent diattenuator, respec-

tively, and MR is the Mueller matrix for a general el-

liptical retarder. MP and MD are related as MP =
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MRMDMT
R. Below, we only use the left-equivalent di-

attenuator form of this decomposition. The matrix for

a general diattenuator from Chipman et al. (2018), nor-

malized and expressed as a parallel decomposition, is:

MP =


1 dH d45 dR

dH A 0 0

d45 0 A 0

dR 0 0 A

+

1−A
D2


0 0 0 0

0 d2H d45dH dRdH

0 dHd45 d245 dRd45

0 dHdR d45dR d2R

 (6)

where we can also write the normalized diattenuation

vector [dH , d45, dR]T in equivalent spherical coordinates:

dH = D cosα sinβ (7)

d45 = D sinα sinβ (8)

dR = D cosβ (9)

A =
√

1−D2 (10)

where D is the magnitude of the diattenuation vector

(0 ≤ D ≤ 1) and α and β are the equivalent angles for

the vector.

An elliptical retarder acts a generalized rotation of a

Stokes vector on the Poincaré sphere. Its Mueller ma-

trix is most often written to include an axis-angle ro-

tation matrix where the eigenpolarization direction (or

fast axis) defines the axis of rotation (see Equation 29 of

Chipman et al. 2018). For our purposes, it is advanta-

geous to convert this matrix into a combination of more

simple components. Manhas et al. (2006), for exam-

ple, shows that an elliptical retarder can be equivalently

written as the product of a linear retarder with a fast

axis angle oriented at some angle and a rotation matrix.

Here we employ the extrinsic z-x-z convention for Eu-

ler angles, which corresponds to the product of Mueller

matrices for a circular retarder, a linear retarder with

fast axis at 0◦, and another circular retarder:

MR = MR3MR2MR1 (11)

where

MR1 =


1 0 0 0

0 cosφ sinφ 0

0 − sinφ cosφ 0

0 0 0 1

 (12)

MR2 =


1 0 0 0

0 1 0 0

0 0 cos δ sin δ

0 0 − sin δ cos δ

 (13)

MR3 =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 . (14)

Now that we’ve broken down the optical model into rel-

atively simple parts, we can see how they can be applied

to the problem of solar spectropolarimetry in the next

section.

3. IMPLEMENTATION

Let’s assume we have a spectropolarimetric mea-

surement from an instrument with two spatial dimen-

sions and one spectral dimension (x, y, and λ respec-

tively). The measurement contains an area of the

Sun with strong magnetic fields with different orien-

tations. The original Stokes spectra from this region,
~SOrig = [IOrig, QOrig, UOrig, VOrig]

T
, are produced by

photospheric spectral lines sensitive to the Zeeman ef-

fect, and consist of symmetric Stokes Q and U pro-

files and anti-symmetric Stokes V profiles as well as

Stokes I. The demodulation of the observed intensities

has been done to retrieve the measured Stokes vector,
~SMeas = [IMeas, QMeas, UMeas, VMeas]

T
, but there is

still some uncorrected optical path that mixes up the po-

larization and intensity signals of ~SOrig; that is, there is

an unknown Mueller matrix that transforms ~SOrig into
~SMeas as in Equation 2. We assume that the instrument

geometry is effectively static during the observation so

that the rotation matrices Ri are fixed. We also assume

that the instrument polarization properties are constant

over the observed wavelengths and field-of-view of the

measurement. This last assumption is made primarily

to keep the current exposition as clear as possible. Field

of view and wavelength dependent polarization may be

significant and our technique could be extended to ac-

count for their effects. We discuss this more in Section

6.

Our goal is to determine the diattenuator (MP ) and

retarder (MR) Mueller matrices that minimize certain
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criteria based on physical assumptions about the polar-

ized signals from the Sun. The diattenuator and retarder

combine to produce the recovered, general Mueller ma-

trix MRec. We discuss different minimizing functionals

L below. The recovered Stokes vector is produced by

applying the inverse of the recovered Mueller matrix to

the measured Stokes vector during iterative minimiza-

tion steps:
~SRec = M−1Rec~SMeas. (15)

After the minimization, ideally ~SRec ' ~SOrig.

The determination of the diattenuation matrix may

be complicated by the presence of polarization in the

continuum of the Sun, which is linearly polarized along

the direction perpendicular to the limb due to scatter-

ing in the solar atmosphere. The magnitude of linear

polarization increases from disk center to the limb and

is dependent on wavelength (Fluri & Stenflo 1999). For

small fields of view (on the scale of sunspots) it is not

possible to distinguish linear polarization of the contin-

uum from diattenuation induced by the optical system.

To accurately recover diattenuation parameters, we need

to restrict ourselves to regions near disk center where we

can assume that the continuum is unpolarized on aver-

age. Extension of this technique to regions with a lin-

early polarized continuum should be possible provided

that the continuum polarization can be accurately mod-

eled. This is discussed further in Section 6.

Because we have assumed that the continuum is un-

polarized, and Stokes I is only exchanged with Q, U, or

V by diattenuation, the determination of diattenuation

and retardance terms can be separated into two differ-

ent steps. The main reason to separate the models is

a practical one: spectropolarimetric data often require

destreaking in the spatial domain of Stokes Q, U, and V.

This involves subtracting any residual Stokes I cross-talk

from the spectrum at each (x, y) position, e.g. for Stokes

Q this might look like Qxyλ − Ixyλ 〈Qxyλ/Ixyλ〉λcont.

where the term in brackets is an average over contin-

uum wavelengths. Such streaks might arise from slight

vertical mismatch in the beam registration for a dual-

beam spectopolarimeter or other instrument instabili-

ties. The destreaking step needs to be done after re-

moval of cross-talk between Stokes I and the polarized

states; and, to ensure streaks are not interpreted as po-

larized cross-talk, they need to be removed before deriv-

ing the retardance terms. This was the motivation for

selecting the left-equivalent diattenuator decomposition

in Equation 5.

Armed with what we know about Stokes I, Q, U, and

V, we can now construct a minimization criteria that

reduces the diattenuation cross-talk. We want to choose

a criteria that minimizes the correlation of Stokes Q, U,

and V to I. To achieve this, we take the inner product

of Stokes I on Q, U, and V, integrated over wavelength,

and summed over all spatial positions:

LP =
∑
xy

(∣∣∣∑
λ

IQ
∣∣∣+
∣∣∣∑
λ

IU
∣∣∣+
∣∣∣∑
λ

IV
∣∣∣) (16)

where the I, Q, U , and V terms are the ones produced by

application of the recovered diattenuation Mueller ma-

trix M−1PRec~SMeas. This has the effect of both minimiz-

ing the continuum polarization and reducing the correla-

tion of the uniformly signed Stokes I line profiles against

the Stokes Q, U, and V profiles which have both posi-

tive and negative sign. In preparation for the next step,

we apply the inverse of the final diattenuation Mueller

matrix from the minimization to the measured data to

produce a Stokes vector with Stokes I cross-talk removed

(~SPRec).

Now we can turn our attention to the problem of

cross-talk between only the polarized components of the

Stokes vector. Let us consider how the three matri-

ces in Equation 11 exchange polarization of the original

Zeeman-split spectral profiles from the Sun, where the

profiles from Q and U are symmetric and the V profile

is anti-symmetric in wavelength about line center. The

first matrix MR1 exchanges Q and U. This is equivalent

to a rotation of φ/2 in the plane of the sky, where the

factor of 2 recognizes that the Q and U axes are only 45

degrees apart in the Cartesian frame fixed to the Sun.

Q and U being similar, symmetric kinds of profiles, we

cannot tell that they have been exchanged simply by

looking at the profile shapes. The second matrix MR2

exchanges U and V signals. This exchange manifests,

quite obviously, as anti-symmetric line profiles mixed

into U and symmetric profiles mixed into V. The final

matrix MR3 exchanges the new U profile (containing V

signal) and the Q profile resulting from the first matrix

multiplication (that still looks symmetric). This rota-

tion is also obvious because anti-symmetric profiles are

now mixed with the symmetric Q profiles.

The first transformation by MR1 cannot be distin-

guished based on the profile shape alone and must be

determined by another method. A minimization based

on profile shapes can only act on the MR3MR2 portion

of Equation 11. We construct a single model from these

two matrices and use a minimization that enforces zero

net circular polarization (Stokes V from the Sun should

be anti-symmetric) and minimizes the correlation of Q

to V and U to V (the product of symmetric and anti-

symmetric functions is anti-symmetric). The minimiz-

ing functional is

LR =
∑
xy

(∣∣∣∑
λ

QV
∣∣∣+
∣∣∣∑
λ

UV
∣∣∣+
(∑
λ

V
)2)

, (17)
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where the Q, U, and V terms are the ones produced by

application of the recovered retardance Mueller matrix

MR23Rec
~SPRec. There are several degenerate combina-

tions of the angles θ and δ appearing in Equations 12-14

that satisfy the minimization criteria LR → 0. There

is no way to distinguish between positive and negative

sign in Q, U, or V, or to tell to what degree Q and U

have been exchanged, but by knowing a single solution

we can easily determine the others. The final Mueller

matrix from the minimization, MR23Rec, can be applied

at this point to recover the Stokes vector with the com-

bined cross-talk between Stokes Q and U and Stokes V

removed, ~SR23Rec.

Several aspects of the last result require additional

information. The MR1 matrix in Equation 11 that spec-

ifies the orientation of the linear polarization coordinate

system on the Sun, and the sign degeneracies in the

recovered Stokes V, still remain be determined and can-

not be resolved using the minimization techniques de-

scribed above. There are several ways in which these

issues might be resolved:

(i) Approximate knowledge of the instrument Mueller

matrix, based either on direct polarization mea-

surements or modeling of the optical properties

of each element, could help resolve the ambigui-

ties and retrieve the linear polarization coordinate

system.

(ii) The sign convention and rotation could be deter-

mined self-consistently using the expected geom-

etry of the solar magnetic field with a technique

similar to those used to resolve the the 180◦ am-

biguity for magnetic fields (e.g. Metcalf 1994).

(iii) The corrected Stokes profiles resulting above could

be compared to an external, fully calibrated tele-

scope with known or small polarization errors.

If ii has been done, then all that remains to be deter-

mined in iii is the sign of the magnetic field in a global

sense, either into or out of the Sun. This can be done

by comparison to a line-of-sight magnetogram.

Once they are determined, the results of these cor-

rections can be used to retrieve the instrument Mueller

matrix at the time of the measurement. All of the pieces,

the diattenuation matrix and the retarder matrix with

the sign and angle ambiguities resolved, are necessary

to reconstruct the proper Mueller matrix for the optical

system.

4. APPLICATION

4.1. Dataset

To demonstrate our technique, we have selected a

dataset from the Solar Optical Telescope Spectropo-

larimeter (SOT/SP) on board the Japanese Space

Agency’s Hinode spacecraft (Kosugi et al. 2007). The

polarization properties of SOT/SP were rigorously cal-

ibrated before launch at the 10−3 level relative to the

Stokes I intensity (Ichimoto et al. 2008), and as a space-

based instrument it provides very stable observations

with high signal-to-noise. These properties make Hin-

ode a useful tool for resolving degeneracies by method

iii, above. More information about the instrument can

be found in Lites et al. (2013).

SOT/SP observes a 2.4 Å wide bandpass centered at

6302 Å that contains two strong photospheric Fe I lines

at 6301.5 and 6302.5 Å sensitive to the Zeeman effect

with effective Landé g factors of 1.67 and 2.50 respec-

tively. This bandpass also includes several weaker lines

that appear more strongly in sunspots. These lines pro-

duce a low level of additional polarization in and around

the stronger Fe I lines.

The selected dataset is a raster scan of the active re-

gion NOAA 11092 starting at 2010-08-03 15:00:53 UT

when the main sunspot was nearest the central meridian

of the Sun. NOAA 11092 was a classic α-type active re-

gion in the Hale classification (Hale et al. 1919), with a

large monolithic sunspot in the leading polarity that was

stable over many days. There was no significant flare

activity recorded on this day, or on the days before or

after the observation. The raster took approximately 25

minutes and covered an area of 121×122 arcsec2 includ-

ing the sunspot and surrounding active network. The

SP fast mode was used for this scan, resulting in a spa-

tial sampling of 0.3 arcsec in the directions parallel and

perpendicular to the slit.

We obtained the Level 1 SOT/SP data from the High

Altitude Observatory’s Community Spectropolarimet-
ric Analysis Center (https://www2.hao.ucar.edu/csac).

Level 1 data includes the Stokes I, Q, U, and V spec-

tra for each step in the raster. This data has already

been reduced and corrected for a variety of effects in-

cluding the removal of the instrument Mueller matrix

using the SP_PREP calibration package (Lites & Ichimoto

2013). These routines apply a final polarimetric correc-

tion that removes any residual continuum polarization

from the spectra at every spatial position in Stokes Q

and U. However, the destreaking of the Stokes V spectra

is only performed for spatial positions where the Stokes

V signal falls below a certain threshold because the wing

of the profile can extend to the edges of the bandpass in

regions with strong magnetic fields (see Section 3.2.9 of

Lites & Ichimoto 2013). In the dataset we have selected

https://www2.hao.ucar.edu/csac
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Figure 1. Raster maps showing the continuum intensity (left panel) and the maximum of the fractional polarization
(
√

Q2 + U2 + V 2/I) in the Fe I 6302.5 Å line (right panel). The gray contours in the right hand panel separates regions
with large and small polarization signatures at the 5% level selected as input to our technique and for determination of Stokes
V to Q and U cross-talk coefficients for the Kuhn et al. (1994) method. The orange contour in the left hand panel shows the
umbral region selected for determining Stokes Q and U to V cross-talk coefficients for the Kuhn et al. (1994) method. The
spectra from the slice indicated by the red dashed line are shown in Figure 2, while the individual spectral profiles for the red
point are shown in Figure 3.

it does not appear that destreaking has been applied to

Stokes V at all.

The subsequent data processing and analysis was per-

formed using the Python 3 programming language mak-

ing use of the NumPy, SciPy, Astropy, and a few other

publicly available modules1. To determine the inten-

sity normalization to the quiet-Sun continuum, we con-

structed a histogram of Stokes I using 200 bins and took

the intensity value at the peak of histogram. Because

the majority of the raster is over granulation and most of

the spectral pixels are in the continuum, the value at this

peak should be representative of the average quiet-Sun

continuum intensity. We normalized the Stokes com-

ponents at each spectral and spatial pixel by this value.

We then applied destreaking to Stokes V using the same

technique as describe by Lites & Ichimoto (2013) but

using different threshold values: we apply destreaking

only for spatial locations where the mean value of |V/I|
is less than 8% and then use the portions of the Stokes

V spectrum with values of less than 1% in |V/I|.
Figure 1 shows a map of the continuum intensity (left

panel) and the maximum value of the fractional polar-

ization (
√
Q2 + U2 + V 2/I) in the Fe I 6302.5 Å line

(right panel). The analysis described in the rest of this

1 IPython notebooks containing this analysis are available on https:
//github.com/sajaeggli/adhoc xtalk.

section was performed on sub-selections of spatial re-

gions based on the continuum intensity and polarization

fraction shown in these maps. The orange contour in the

left panel shows the continuum intensity at a value of

0.454Ic which was used to define the sunspot umbra.

The gray contours in the right panel show the 5% level

of fractional polarization in the Fe I line. An example

of the original Stokes spectra after normalization and

removal of the residual continuum in Stokes V is shown

in the top four panels of Figure 2. These come from the

region indicated by the dashed red line in Figure 1.

4.2. Generation of Polarization Cross-Talk

To test our ad hoc calibration we took the map of

Stokes vectors as measured by SOT/SP as a ground-

truth reference and then applied some artificial cross-

talk which was then removed by our method. To gen-

erate the cross-talk we used a realistic Mueller matrix

based on a preliminary model of the DKIST telescope

optics including M1 through M6 (Harrington et al. 2021,

Harrington et al. 2022, submitted to the DKIST special

issue of Solar Physics). We use this model because we

have access to it, have good knowledge of how it was

produced, and understand that it represents a realistic

optical system. The diattenuation in the model was ar-

tificially enhanced by a constant factor so that it could

be easily seen. The cross-talk Mueller matrix was then

applied to the data to generate a corrupted Stokes vec-

https://github.com/sajaeggli/adhoc_xtalk
https://github.com/sajaeggli/adhoc_xtalk
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tor. For an arbitrary date and time during the local

observing day we determined the azimuth and elevation

of the Sun in the sky above DKIST based on the so-

lar ephemeris (azimuth: 87.0◦, elevation: 49.5◦). The

model Mueller matrix was then calculated for this tele-

scope azimuth and elevation, with a coudé rotator angle

of −30◦, and at a wavelength of 6302 Å. This produced

a Mueller matrix with the following elements:

MOrig =


1. 0.007 0.053 −0.020

−0.033 0.728 −0.592 0.344

0.047 0.674 0.704 −0.220

0.002 −0.112 0.392 0.911

 (18)

The matrix elements have been rounded to three sig-

nificant digits, although the calculations were carried

out using double precision floating point values. Hence-

forth we will call this the “original” system Mueller

matrix. We note the decomposition of this matrix

using Equation 5 implies a diattenuation vector of

[−0.033, 0.047, 0.002]T and Poincare sphere rotation an-

gles of (φ, δ, θ) = (−16.0◦, 24.1◦, 57.4◦). The second row

of panels in Figure 2 shows the corrupted Stokes Q, U,

and V spectra along the red dashed line in Figure 1, i.e.

the original Stokes vector transformed by MOrig. The

new Stokes I spectrum appears almost identical to the

original, so it is not shown.

4.3. Model-Based Approach

The minimization against the diattenuation model

was applied first as suggested in Section 3 to determine

the best fit D, α, and β parameters of the model given in

Equation 6. The minimization was supplied with a sub-

set of the spatial area of the raster. Only those regions

with low polarization signals, outside of the gray con-

tour in Figure 1, were used. We did not do any special

selection based on wavelength, the full spectrum from

these regions was supplied to the minimization. After

the best fit parameters were determined, the diattenua-

tion Mueller matrix was calculated according to Equa-

tion 6, then it was inverted and applied to the corrupted

Stokes vector for each spectral and spatial pixel in the

dataset to correct for the cross-talk between Stokes I

and the polarized states.

Next we optimized the retardance model with only

the MR3 and MR2 matrices from Equation 11, using the

minimization criteria in Equation 17 to determine the δ

and θ parameters. In this step we used only the regions

with high polarization signal within the gray contour

shown in the right panel of Figure 1. We again used

all pixels in the spectral dimension, no special spectral

selection was done. The best fit model Mueller matrix

was calculated using parameters from the minimization,

then it was inverted and applied to every spatial location

to correct the cross-talk between Stokes Q and U and

Stokes V.

After this step we did a comparison against the origi-

nal Stokes profiles to manually resolve any global (uni-

formly applied in x, y, λ) sign differences in Stokes Q,

U, and V due to the degeneracies in the technique. We

did not attempt to determine the residual rotation of Q

and U using the sunspot geometry. The Mueller matri-

ces from each of the three steps were multiplied together

in order to retrieve the system Mueller matrix:

MThisWork =


1. 0.022 0.049 −0.019

−0.033 0.528 −0.776 0.342

0.047 0.848 0.485 −0.213

0.002 0.000 0.402 0.914

 .
(19)

The Stokes Q, U, and V components recovered by our

model-based technique are shown in the third row of

panels in Figure 2.

4.4. Alternate Approach

For the purposes of comparison with our model-based

approach, we did a determination of the cross-talk terms

from Stokes I to Q, U, and V based on the technique of

Sanchez Almeida & Lites (1992), and a determination

of the cross-talk between Stokes Q and U and Stokes V

based on the technique of Kuhn et al. (1994). We denote

this technique SL92/K94.

To get the Stokes I to Stokes Q, U, and V cross-talk

terms we selected a section of the continuum from the

spectrum and took the mean value of Q/I, U/I, and V/I

over all spatial and spectral pixels within the continuum

region. In the style of Elmore et al. (2010), we call

these coefficients e, f , and g respectively. Based on these

parameters we constructed the following inverse matrix:

M−1SL92 =


1 0 0 0

−e 1 0 0

−f 0 1 0

−g 0 0 1

 . (20)

This matrix was used to produce a corrected Stokes vec-

tor for the next step.

In the method of Kuhn et al. (1994), the cross-talk

from Stokes Q and U into Stokes V is determined and

removed before the cross-talk from Stokes V into Q and

U. This technique requires detailed knowledge of the line

center and width, so we first determined the Fe I 6302.5

Å line center by taking the center of mass of the polar-

ized line profile, using a spectral selection that excluded

the other Fe I line. All profiles were shifted to center
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Figure 3. Example Stokes profiles for the position indicated by the circular marker Figure 1 and the dashed line in Figure 2.
The top row shows the original and retrieved profiles from our method and the Kuhn method. The lower row of panels shows
the difference between the original and recovered profiles.

them at the same spectral pixel. The signal in the cen-

tral Zeeman component was determined for Stokes Q,

U, and V by taking the average over the line core, ±2

pixels from the center wavelength. A multiple linear re-

gression was used to determine the cross-talk coefficients

of Stokes Q and U into Stokes V (a and b in Kuhn et al.

(1994)). A corrected Stokes V was constructed using

the coefficients determined from the linear regression.

The V to Q and U parameters (c and d) were deter-

mined by taking the median of
∑
xyλQV/

∑
xyλ V

2 and∑
xyλ UV/

∑
xyλ V

2 where the sum used the full line

profile of the Fe I 6302.5 Å line. The coefficients were

then used to calculate the inverse matrix according to

Kuhn et al. (1994):

M−1K94 =


1 0 0 0

0 1 + ac cb −c
0 ad 1 + bd −d
0 −a −b 1

 . (21)

Note that this is actually transposed from the format

given in Kuhn et al. (1994) so that the matrix operates

on a column Stokes vector, i.e. ~S = M−1~S′. This matrix

was used to correct the data resulting from the previous

step (correction of Stokes I cross-talk).

Similar to the case of our model-based approach,

we manually constructed a third matrix to resolve the

global sign differences to make the cross-talk corrected

spectra match the sign of the original Stokes spectra.

The matrices from these three steps were inverted and

multiplied to reconstruct the system matrix:

MSL92/K94 =


1. 0. 0. 0.

−0.033 1. 0. 0.314

0.047 0. 1. −0.192

0.001 −0.377 0.248 0.834

 .
(22)

Example Stokes Q, U, and V spectra recovered by the

SL92/K94 technique are shown in the bottom row of
panels in Figure 2.

5. RESULTS

5.1. Recovered Stokes Spectra

Once again consider Figure 2, which shows example

spectra from one step in the SOT/SP raster. This fig-

ure shows the original Stokes spectra (first row), the

Stokes spectra after applying the cross-talk Mueller

matrix (second row), the Stokes spectra recovered by

our model-based minimization method (third row), and

the Stokes spectra recovered by the SL92/K94 method

(fourth row). There is no apparent difference in Stokes

I, so this is only shown once in the top row.

At first glance, the results from our method and the

SL92/K94 method look very similar. Both techniques

are able to recover symmetric Stokes Q and U profiles,

and anti-symmetric Stokes V profiles. There are visi-
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ble differences in the Stokes Q and U vectors recovered

versus the original. Because we have not applied the fi-

nal rotation that accounts for the geometric frame of Q

and U, each pair of Stokes Q and U components shows a

slightly different rotation state of the linear polarization.

There are subtle differences in the recovered Stokes

vector that can be seen more easily when inspecting sin-

gle profiles. Figure 3 shows the Stokes profiles from one

spatial position indicated by the red dashed line in Fig-

ure 2 and the red dot in Figure 1. The upper set of

panels shows the Stokes I, Q, U, and V profiles from the

original Stokes vector (black line and data points), the

Stokes vector recovered by our method (red line), and

the Stokes vector recovered by the SL92/K94 method

(blue line). The lower set of panels shows the Stokes

profiles recovered by each method subtracted from the

original profiles. We can now easily see that the recov-

ered Stokes Q and U profiles are quite different from the

originals, but this is expected because there is still a ge-

ometric rotation to resolve. What is interesting is the

Stokes V residual. At this point, the Stokes V profile

should be essentially the same as the input. Our tech-

nique (red line) retrieves the profile of Stokes V at the

10−3 level with respect to the average quiet-Sun con-

tinuum. The combined SL92/K94 method has a much

larger residual at the few percent level (blue line). The

residual in Stokes V from the SL92/K94 method looks

like Stokes V. This method is not failing to remove cross-

talk, but it is causing an overall change in the amplitude

of the polarized components with respect to the original

input.

We can see the problem with the amplitude of the

polarized components a little more clearly by compar-

ing the net unsigned polarization for the original Stokes

vector and for the Stokes vector recovered by the two

techniques over the full dataset. We calculate the quan-

tity
∑
xyλ

√
Q2 + U2 + V 2 for the original Stokes spec-

tra and for the Stokes spectra recovered by each tech-

nique. For our technique the ratio of total net polariza-

tion with respect to the original data is 1.0 to more than

five digits of precision. For the SL92/K94 technique this

ratio is 1.0436. This means there is excess polarization

signal with respect to Stokes I, and energy is not being

conserved.

The errors in Q and U are due primarily to an unre-

solved rotation of the linear coordinate system, which

has no inherent physical significance. This is easily seen

by looking at the error in the combined linear polariza-

tion signal in the recovered data. Figure 4 shows the

maximum residual of the difference between recovered

and original profiles for total fractional linear polariza-

tion
√
Q2 + U2/I (top row) and circular polarization

|V/I| (bottom row); the maximum is determined over

wavelength in the 6302.5 Å line Fe I line and is dis-

played on a log scale. For our model-based technique,

the maximum error in the combined linear polarization

signal is on par with the error in the circular polarization

signal at the 10−3 level as a fraction of the Stokes I sig-

nal. Some level of error in the recovery of the linear and

circular polarization states is to be expected due to area

asymmetries in the line profiles resulting from physical

processes in the line forming region. There may also be

uncorrected polarization in SOT/SP spectra at the 10−3

level. In contrast, the SL92/K94 technique (right col-

umn) shows much larger residuals in both linear and cir-

cular polarization, peaking near 10−1, and consistently

an order of magnitude larger than our method through-

out the entire spatial domain. This difference is due

primarily to the amplitude error in their treatment of

the total polarization vector.

The spatial distribution of the errors in these maps is

worth noting. For the results of this work, the linear

polarization residual shows enhanced signal in the um-

bra and active network, while the circular polarization

residual shows enhanced signal mainly in the sunspot

itself. The residuals in linear polarization look like cir-

cular polarization, and the residuals in circular polar-

ization look like linear polarization. This is the situa-

tion we would expect if the minimization was influenced

by slight asymmetries in the Stokes profiles from solar

sources. In comparison the SL92/K94 results show the

reverse. The residuals in linear polarization look like

linear polarization, and the residuals in circular polar-

ization look like circular polarization. This is another

impact of this technique’s failure to recover the ampli-

tude of the components of the Stokes vector properly.

5.2. Recovered Mueller Matrices

The recovered Mueller matrices can also show us how

accurate these techniques are. Consider the result-

ing Mueller matrix from our model-based minimization

shown in Equation 19 and the original system Mueller

matrix in Equation 18. This is very similar to MOrig.

The first column (produced only by the diattenuator

model) is highly accurate, as are the terms in the last

column (which are related to the cross-talk from Stokes

V into other states). The terms in the middle of the ar-

ray are somewhat different than in the original Mueller

matrix. If we invert this matrix and apply it to the orig-

inal we can look at the residual uncorrected terms in the
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Figure 4. Log scaled maps of the maximum value of the residual signal (recovered - original) in the 6302.5 Å Fe I line for the
combined linear polarization (top panels) and circular polarization (bottom panels) normalized by Stokes I. The results of the
models-based technique from this work (left panels) are compared to the results of the SL92/K94 technique (right panels) for
polarization correction.

Mueller matrix:

M−1ThisWorkMOrig =
1. 0. 0. 0.

0. 0.959 0.285 −0.005

0. −0.285 0.959 −0.006

0. 0.003 0.007 1.

 . (23)

From the symmetry of the center 4 terms of the ma-

trix, we can see that a rotation matrix for an angle of

cos−1 0.959 = 16.5◦ is necessary for the final correction.

If we apply this final correction to our recovered Mueller

matrix we end up with a system Mueller matrix of:

MThisWorkMR1(16.5◦) =
1. 0.007 0.053 −0.019

−0.033 0.727 −0.594 0.342

0.047 0.675 0.706 −0.213

0.002 −0.114 0.386 0.914

 (24)

which has a residual Mueller matrix of:

(MThisWorkMR1(16.5◦))−1MOrig =
1. 0. 0. 0.

0. 1. 0. −0.003

0. 0. 1. −0.007

0. 0.003 0.007 1.

 (25)
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when compared to the original. After the final correction

for geometric rotation the only remainder is subtle cross-

talk between the linear polarization states and Stokes V

at the 10−3 level. As mentioned above, this remainder is

likely due to slight area asymmetry in the Stokes profiles

due to real physical effects on the Sun.

The matrix produced by the SL92/K94 technique also

has a highly accurate first column, but otherwise looks

quite different from the original Mueller matrix. We

can use the same trick looking at the center 4 terms in

the residual to determine final angle correction that is

necessary to recover Stokes Q and U.

M−1SL92/K94MOrig =
1. 0.007 0.053 −0.020

0. 0.729 −0.588 −0.001

0. 0.673 0.701 −0.009

0.001 −0.004 −0.004 1.095

 (26)

In this case the necessary angle is −41.8◦. This makes

the Mueller matrix after the rotation:

MSL92/K94MR1(−41.8◦) =
1. 0. 0. 0.

−0.033 0.746 −0.666 0.314

0.047 0.666 0.746 −0.192

0.001 −0.117 0.436 0.834

 (27)

And the residual of this from the original is:

(MSL92/K94MR1(−41.8◦))−1MOrig =
1. 0.007 0.053 −0.020

0. 0.992 0.028 −0.007

0. 0.016 0.915 −0.006

0.001 −0.004 −0.004 1.095

 . (28)

Ideally this operation should retrieve something that is

close to the identity matrix. While the Stokes Q and U

to V cross-talk terms (last row and column) are actu-

ally fairly small, the terms along the diagonal are sig-

nificantly different from 1. The format of the matrix

assumed by the Kuhn et al. (1994) method is the root

of the amplitude error. It is already apparent that this

matrix is not a physically valid Mueller matrix because it

does not conserve energy, but we further test it realism

using the inequalities in Kostinski et al. (1993) Equa-

tions 9 and 11. Taken together, these inequalities test

if a Mueller matrix is over-polarizing (i.e. not obeying

energy conservation). The SL92/K94 matrix fails both

of these tests, while the original Mueller matrix and the

one recovered by our technique pass them as expected

because these are both non-depolarizing Mueller matri-

ces.

6. DISCUSSION AND CONCLUSIONS

The primary concept we have put forward is that

ad hoc corrections of polarized cross-talk in spectropo-

larimetric observations can be treated with a physical

model composed of a general diattenuator and an el-

liptical retarder. This same kind of model is used for

modeling telescope optical paths empirically using mea-

surements made with calibration polarizers. This model

is not complicated, and it can be used to accurately

correct arbitrary levels of cross-talk on an observation-

by-observation basis and gain knowledge about the un-

corrected polarization in the telescope and instrument

optical system. Our model is exact for the case of ideal,

non-depolarizing optics. In contrast, previous ad hoc

techniques produce a Mueller matrix which is an ap-

proximation to the non-depolarizing model in the limit

of weak polarization. This approximation does not de-

scribe the properties of physical optical elements; i.e., it

does not obey Maxwell’s equations. This is the primary

difference between the present work and prior methods

and is the reason we are able to obtain higher accuracy.

To find the best fit parameters for the diattenuator

and retarder components of the model, we have imple-

mented separate minimization criteria that are appro-

priate for spectra with an unpolarized continuum con-

taining polarized signals produced by photospheric lines

sensitive to the Zeeman effect. Such lines are commonly

observed as a diagnostic of solar magnetic fields. We ap-

plied this technique to a real observation from Hinode

SOT/SP with known added polarization cross-talk and

were able to retrieve the linear and circular polariza-

tion intensities with accuracy at the 10−3 level or lower

relative to the quiet-Sun continuum intensity.

Although there may be residual polarization in the

SOT/SP spectropolarimetry at the 10−3 level, asymme-

tries in the line shapes are likely the limiting factor in

accurate recovery of the Stokes vector. Asymmetries in

the line profiles may occur due to line of sight velocity

and/or magnetic field gradients across the line forma-

tion region or departures from LTE formation (López

Ariste 2002). These are often greater in the sunspot

penumbra or along polarity inversion lines (some exam-

ples include Sanchez Almeida & Lites 1992; Deng et al.

2010; Kaithakkal et al. 2020). Improvements in the accu-

racy of our method may be possible by avoiding regions

known to show asymmetries.

Because of the symmetry and anti-symmetry proper-

ties of the polarization in the Zeeman-split line profiles,

there is a sign ambiguity in Stokes V, and an ambigu-

ity in the geometric frame of Stokes Q and U, that re-

main. These need to be resolved after the minimization

technique is applied in order to get the proper system
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Mueller matrix and recover the Stokes vector produced

by the Sun. Any ambiguities of this kind could also

be resolved in the magnetic field geometry after a spec-

tropolarimetric inversion for the magnetic field has been

done.

For the problem of cross-talk in spectropolatrimetry

of the solar photosphere, this technique is very simple

to apply and does not require any detailed selection

based on wavelength. The minimization criteria are suf-

ficiently general that they should apply to any polarized

line signature with zero net circular polarization when

summed over wavelength, and Stokes Q and U profiles

that have an appearance different than Stokes V. This

would include non-triplet Zeeman lines, lines produced

through the Paschen-Bach effect, and complex blends of

many lines. The minimization does require strong po-

larized signals in Stokes Q, U, and V states. A large

number of profiles with diverse signals might improve

the accuracy of this technique, but it is not actually re-

quired for the minimization to work. Even one set of

profiles with sufficient signal should be enough.

We have suggested one minimization scheme that

works for strong signals, such as those produced by

active regions, but alternative minimization schemes

would be necessary to apply this technique to other sit-

uations. Quiet-Sun magnetic fields have very weak Q

and U signals, and in this case the QV and UV terms

in our minimization Equation 17 would fail to provide a

strong constraint on the model. It might be possible to

pair the cross-talk modeling with a simple spectropolar-

metric inversion, using the weak-field approximation or

Milne-Eddington fit, to minimize the observed profiles

against model profiles.

A minimization is not actually necessary to determine

the diattenuation terms for this application. Taking a

mean or median of the quantities Q/I, U/I, and V/I

over regions of quiet-Sun continuum works quite well to

retrieve the correct dH , d45, and dR terms respectively.

The significant advantage of our technique over Sanchez

Almeida & Lites (1992) is in using these terms to con-

struct the proper model for Stokes I cross-talk given by

the diattenuation matrix in Equation 6.

For our cross-talk removal technique, and those of pre-

vious authors, any real continuum polarization would

be removed along with cross-talk from Stokes I due to

diattenuation. While the spectral profiles might be ade-

quately corrected, the resulting Mueller matrix will not

be correct. Because the continuum polarization from

scattering is fairly well understood from a theoretical

standpoint, it might be possible to disentangle the diat-

tenuation by modeling the linear polarization magnitude

and direction based on the location of the source region

on the Sun and adding that to the minimizing func-

tional. In that case the linear polarization direction is

known, so modeling it along with the polarization cross-

talk could also solve the unknown geometric rotation

needed to retrieve Stokes Q and U.

The assumptions of uniform polarization response

over wavelength and field of view made in Section 3

need to be evaluated on a case by case basis for the

telescope and instrument system where this technique

is applied. Non-uniformities, particularly from incidence

angle variation with field angle, can introduce significant

spatial and wavelength dependent effects (e.g. Harring-

ton & Sueoka 2017, Section 6.1, Figure 19). Some non-

uniformity of the polarization response might be miti-

gated with an appropriate calibration strategy for the

instrument, using a spatially or wavelength dependent

demodulation. If non-uniformities still persist, our tech-

nique could be applied to diagnose and correct them by

using spatial or spectral sub-regions of the data assum-

ing sufficient polarized signal is present in these smaller

regions.

Our model-based approach has a significant advantage

over previous ad hoc techniques of instrumental polar-

ization correction in that it can be applied to any general

optical system with arbitrary amounts of cross-talk, pro-

vided that it is non-depolarizing. Previously published

techniques were only intended to be applied in situations

where optics are weakly polarizing, or the majority of in-

strumental cross-talk has been removed by other means.

These methods fail to recognize that cross-talk to and

from various polarization states is physically linked, and

they apply the cross-talk correction using an approxi-

mation to the Mueller matrix that does not describe a

physical optical system. In regimes where cross-talk is

large, these techniques produce increasingly unphysical

Stokes vectors and transformation matrices that do not

conserve energy or the polarized signal. Using incorrect

Stokes vector amplitudes in spectropolarimetric inver-

sions could have far ranging effects on interpretation of

the magnetic field strength and direction, and the mag-

netic field filling factor, especially where the polarized

signals are large.
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