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PREFACE
In this monograph we have undertaken a survey of the present status ofthe

problem of interpreting the line spectra due to atoms. This interpretation
seems to us to be in a fairly closed and highly satisfactory state. All known
features of atomic spectra are now at least semi-quantitatively explained
in terms of the quantum-mechanical treatment of the nuclear-atom model.

This does not mean that the period of fruitful research in atomic spectra
is at an end. Fundamental questions are still outstanding in regard to the

relativistic theory of the many-electron problem and also in regard to the

theory of the interaction ofradiation and matter. In addition every reader

will see many places where more experimental information and better or

more detailed theoretical calculations are desirable. It is our hope that the

book will be useful in stimulating progress along these lines. With this end

in view we have aimed to give explicitly an example of the use of each of

the general types of calculation involved and an adequate survey of the

literature of the more specialized calculations. The literature is covered

approximately to the summer of 1934 although a few later references

have been incorporated.

There exists confusion in the original literature about two matters which

we have made every effort to clear up in this book :

In the first place it has been too little recognized that a matrix is not

fully useful in the transformation theory unless the relative phases of the

states to which the components refer are in some way specified, since two

matrices cannot be added or multiplied unless these phases are the same in

both. The phase choice is arbitrary, just like the troublesome sign conven

tions in geometrical optics, but one choice does have tobemadeand adhered

to throughout a given set of calculations. To facilitate the use ofthe formulas

and tables ofthe book in other calculations, we have attempted in every case

to make explicit the specification of the phase choice employed.

In the second place there occurs, particularly in the theoretical literature,

a great diversity of spectroscopic terminology. We have attempted to

adhere as closely as possible to the original meanings of the nouns which

denote energy levels and spectral lines, and find that this gives a nomen

clature that is convenient and unambiguous. Briefly, our usage is the

following : a component (of a line) results from a radiative transition between

two states of an atom; a line results from the totality of transitions between

two levels
; ijx Bussell-Saunders coupling, a multiplet is the totality of lines
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connecting the levels of two terms, and a supermultiplet is the totality of

nmltiplets connecting the terms of two polyads ;
a transition array is the

totality of lines connecting the levels of two configurations.

We have defined in 74 a quantity, called the strength of a line, which we
find to give a more convenient theoretical specification of the radiation

intensity than either of the Einstein transition probabilities. We hope that

this new usage will find favour among spectroscopists.

We take pleasure in making acknowledgment here of the valued help of

many friends with whom we have discussed various parts ofthe theory, and
who have criticized portions of the manuscript. In particular we are in

debted to Prof. BL P. Robertson of Princeton for most of the elegant new
treatment of spherical harmonics given in 43

;
to Dr F. Seitz of Princeton

and to Prof. C. W. Uflford of Allegheny College for special calculations
; and

to Mr B. Napier for assistance in preparing the figures. Completion of the

work was greatly facilitated by generous arrangements by the senior

author s colleagues at Princeton to relieve him of most ofhis teaching duties

for a term. The junior author is appreciative of courtesies shown by the

physics faculties ofthe University of Minnesota, where he spent the summer
of 1933, and of the Massachusetts Institute of Technology, where he spent
the year 1933-1934 as a National Research Fellow. The greater part of his

work on the book was done while he was a Fellow in Princeton University
in the years 1931-1933.

Finally we wish to record our great enthusiasm for the beautiful typo
graphical work ofthe Cambridge University Press as exemplified once more
in the following pages.

E. U. C.

G. H. S.

March 1935

We are naturally gratified at the reception that our work has had and regret

very much that other duties have prevented our giving it the thorough
revision which it needs. The present printing is essentially a reprint of the
1935 edition except that a number of errors and misprints have been
corrected.

May 1950

E. U. C.

G. H. S.



CHAPTER I

INTRODUCTION

&quot;And so the true Cause of the Length of that Image was detected to be no other,

than that Light is not similar or Homogenial, but consists of Difform Rays, some
of which are more Refrangible than others.&quot; NEWTON.

Spectroscopy is that branch of physics which is the direct outgrowth of a

classic experiment of Newton s which, led him to the conclusion which we
have placed at the head ofthis chapter. Newton s experimental arrangement
is shown in Fig. I 1

,
which is taken from Voltaire s Elemens de la Philo-

sophie de Newton (Amsterdam, 1738, p. 116). The beam of sunlight enters

a hole in the window shutters and traverses the prism, falling on the

screen P. The image is not round like the hole in the shutter, but long in

the direction perpendicular to the axis of the prism and coloured.

Fig. I 1
. Newton s discovery of dispersion.

This arrangement is the proto-type ofthe modern spectroscope. As we are

here interested in the theory of spectra we shall not concern ourselves with,

the technique ofspectroscopy as it has developed from Newton s time to the

present. Our principal interest will be the information concerning the nature

of the atom which is obtained from a study of the characteristic radiations

emitted by monatomic vapours.
After the discovery of sharp dark lines in the solar spectrum and sharp

emission lines in spectra of flames, arcs, ard sparks, the physicists of the

nineteenth century seized upon spectroscopy as a valuable tool for qualita

tive chemical analysis. At that stage the experimental problem consisted in

correlating the various lines and bands seen in the spectroscope with the

chemical nature of the emitting substance. This task in itself was by no

means simple, for the spectroscope is extraordinarily sensitive to small

impurities and it was difficult to deal with sources pure enough to make
certain the correlation of the observed lines to the substances in the source.



2 INTRODUCTION

Another thing which made for difficulty is the fact that the spectra do not

depend simply on the chemical elements present but on their state of

chemical combination, which in turn is usually altered by the conditions

which render the substance luminescent. To this period also belongs the

beginning of the great task of setting up accurate standards of wave-length.
It early became clear that the observed spectra are of three general types.

Continuous, that is, having no line structure in the spectroscopes of greatest

resolving power. These are emitted by incandescent solids, but also under

some circumstances by molecules and even by single atoms. Banded, having
a special form of line structure in which close groups of many lines occur

so densely packed that in smaller instruments they appear continuous.

These are characteristic of the spectra of molecules and arise from the

many possible changes in the rotational state of the molecule during the

radiation process. Line, where the lines are well separated and generally
show no obvious simple arrangement although in many cases they are

grouped into small related groups of a few lines. Such spectra are due to

individual atoms.

The line spectrum due to a single chemical element in the form of a mon-

atomic vapour shows still another complication. It was early learned that

quite different spectra are obtained from the same element according to the

energetic violence with which it is excited to luminescence. In the electric

spark more energy is put into the emitting atoms than in the electric arc and

generally quite different lines result from the same element for these two

modes of excitation. These differences are now known to arise from different

degrees of ionization of the same element.

Evidently the next step is that of trying to understand the structural

nature of an atom which enables it to emit its characteristic radiations. For
the purposes of the classical kinetic theory of gases it is not necessary to

assume anything more about atoms than that they behave something like

hard elastic balls. As a consequence the range of phenomena which that

theory embraces is not in a position to tell us more about the structure of

atoms than an estimate of their size. In the spectrum of one element we are

given a vast amount of data which is measurable with great precision.

Evidently it is somehow determined by the structure of the atom, so

spectroscopy stood out clearly in the minds of physicists as an important
means for studying that structure.

In the latter part ofthe nineteenth century Maxwell developed his electro

magnetic wave theory which received experimental confirmation in the

experiments ofHertz and Oliver Lodge. Because the velocity oflight agreed
with the velocity of electric waves, the theory of electric waves was early

applied as a theory of light. The wave theory of light, hitherto developed as
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a theory of elastic vibrations in the universal medium, the ether, was re

written in terms of the theory of electromagnetic waves. A little later the

electron was discovered through researches on cathode rays and the chemical

theory of ions was developed in connection with the electrolytic dissociation

hypothesis. The view became current that atoms are structures built out of

electrons and positive ions. A branch of physics called the electron theory

of matter came into being whose programme called for the explanation of

the properties of matter in terms of this picture with the aid of the laws of

the electromagnetic field.

During this period empirical regularities in line spectra were being found.

The best known of these was Bahner s simple formula (1885) for the wave

lengths of the visible lines of the hydrogen spectrum.

Although experimentalists still prefer to express their measurements in

terms of wave-lengths, Hartley showed (1883) that there are regularities

in the spacing of related doublet or triplet lines which are more simply

expressed in terms of the reciprocal of the wave-length, that is, the wave-

number or number ofwaves in unit length. This discovery is of the greatest

theoretical importance. There is no logical reason to-day for dealing with

wave-lengths at all, and they are seldom mentioned in this book. But the

custom of thinking in terms ofthem in the laboratory is probably too firmly

entrenched to be shaken off for a long time. After the work of Balmer comes

the important researches of Rydberg and of Kayser and Runge, who dis

covered that many spectral lines in various atomic spectra, chiefly those of

alkali and alkaline-earth metals, can be organized into series obeying
formulas similar to the formula of Balmer.

These empirical discoveries ofspectral regularities reach their culmination

in the clear establishment of the Ritz combination principle. This came in

1908 after two decades of important work on the study of spectral series.

According to this result each atom may be characterized by a set ofnumbers

called terms, dimensionally like wave-numbers, such that the actual wave-

numbers of the spectral lines are given by differences between these terms.

Ritz thought that lines were associated with all possible differences between

these terms, and this is in accord with modern theoretical views, except that

the lines associated with some differences are millions of times weaker than

others so that practically there are important selection rules needed to tell

which differences give strong lines.

The principle received striking confirmation in the same year through

Paschen s discovery of an infra-red series in hydrogen. The wave-numbers

of the Balmer series are represented by the formula
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where R 109677 cm-1
, an empirical coefficient called the Rydberg con

stant. In Ritz s language this means that this particular set of lines arises as

differences of the terms cru =R/7i
2 and the particular term cr2=R/2

2
. The

combination principle suggests the existence oflines given more generally by

_ / 1 1\r=R I.

\m2
nr]

For m= 3 and 71= 4, 5, 6, ..., the lines fall in the infra-red. Paschen found

them at the predicted places* Lyman also found in the ultra-violet three lines

corresponding to ra= 1 and n = 2, 3, 4. The principle was quickly assimilated

as an important rule in the analysis of spectra. It holds in all cases, even

when the individual terms cannot be represented by a simple formula as is

the case with hydrogen. Its applicability is of great generality, holding for

molecular as well as atomic spectra.

The first decade of the twentieth century was important as showing,

through the work of Planck on black-body radiation and Einstein on the

photo-electric effect, that there is much more to the laws of interaction of

matterand radiation than is givenbythe nineteenthcenturyelectromagnetic

theory. These developments mark the birth ofquantum theory. The electron

theory programme had led to some simple assumptions concerning atomic

structure and had had some notable successes, particularly in Lorentz s cal

culation of the effect of a magnetic field on the spectral lines, as observed by
Zeeman. Spectral lines were associated with the electromagnetic radiation

coming from motion of the electrons in an atom, generally regarded simply

as harmonic oscillations about an equilibrium position. Great difficulty

attached to the interpretation of the enormous number of spectral lines

without the introduction of unreasonable complications in the model. On
the experimental side a most important step was the recognition, through

experiments on scattering of alpha particles made by Rutherford, that the

positive electricity in an atom is confined to a small particle which is now

called the nucleus of the atom. Its linear dimensions are not greater than

about 10~4 those of the whole atom.

The stage is now set for the great theoretical developments made by Bohr

from 1913 onward. Rutherford s experiments had given a general picture

of a nuclear atom a positively charged massive nucleus surrounded by
the negatively charged and much less massive electrons. The theoretical

developments had given imperfect and unclear indications of the need of

fundamental changes in the electron theory for the process of emission and

absorption of radiation. Empirical spectroscopy was organized by means

of the Ritz combination principle and the extensive study of spectral series.

In 1913 Bohr s first work on atomic structure gave a theory of the spectrum
of hydrogen which involved several important advances.



INTRODUCTION 5

Most general was the idea of stationary states and the interpretation of

the Ritz combination principle. It is postulated that the possible states of

atoms and molecules are restricted to certain values of the total energy.
These values are determined by the structure of the atom or molecule and

may be continuous in some ranges, as in the classical theory, or may be

restricted to a set of discrete values. Then the postulate is made that the

emission or absorption of radiation is connected with a process in which.

the atom passes from one energy level to another. This is rendered precise by
the statement that the frequency of the radiation emitted is given by the

where h is Planck ^s constant, v the frequency of the radiation, E the energy
of the atom before the radiative process and E2 its energy afterwards. If

E2 &amp;gt; El the frequencies come out formally negative their numerical values

are the frequencies of light which can be absorbed by atoms in the state of

energy El . This expresses the frequencies as differences of numbers cha

racteristic of the atom and establishes a coordination between the energy

levels, E, and the terms, &amp;lt;r, through the relation

The minus sign arises since the conventional way of measuring term values

was by counting them as positive when measured from, the series limit.

There is no reason to adhere to this convention, so that we shall always write

and regard a simply as a measure of the energy in the auxiliary unit, cm.&quot;&quot;

1
.

The hypothesis suggests its own means of experimental verification. If

atoms are excited to radiate by single electron impacts in which the electrons

have known kinetic energy E} then the only spectral lines appearing should

be those for which the energy of the initial state E^ is less than E, (This

assumes that the zero of energy is the energy of the lowest state and that

before impact the atoms are all in this lowest state.) This is the idea under

lying the experiments of Franck and Hertz and many others on critical

potentials. Such experiments have fully confirmed the energy level inter

pretation of the spectroscopic terms and have been a valuable tool in experi
mental work. By controlled electron impact it is possible to bring out a

spectrum bit by bit as the kinetic energy of the impacting electrons is

gradually increased, thereby simplifying the task of determining the energy
levels which are associated with the production of the different lines.

The other part of Bohr s early work was the development of a special

dynamical model for the hydrogen atom and the study of rules for the

determination ofthe allowed energy levels. The model for this simplest atom

consisted of an electron and proton describing orbits about their centre of
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mass according to classical mechanics under their mutual attraction as given

by the Coulomb inverse-square law. The allowed circular orbits were

determined simply by the requirement (an additional postulate of the

quantum theory) that the angular momentum of the system be an integral

multiple of H = hjSir. This served to give an energy

^=-
for the circular orbit whose angular momentum is nti, whence the term

vakesare ^n
he

Not only is the variation as ?r~2 in accord with the scheme of terms as given

by the Lyman-Balmer-Paschen series in hydrogen, but the numerical

coefficient comes out correctly, so by this means the empirical Eydberg
constant R was for the first time related to universal constants.

Naturally this definite accomplishment stimulated other work and in the

next few years gseat advances were made in interpretation of finer details of

the hydrogen spectrum due to relativistic effects (Sommerfeld) and the effect

of an electric field on the hydrogen spectrum (Epstein, Schwarzschild). Also

it gave rise to much Importantwork in extending the model and the quantum
principle to other more complicated atomic and molecular structures. These

studies were eminently successful in a semi-quantitative wayandgave agreat

impetus to the experimental study and analysis ofatomic spectra. The theory
called for a study of the model by means of classical mechanics. The so-

called multiply periodic motions had to be sought out and of these the

allowed ones determined by a rule of quantization which was an outgrowth
of Bohr s requirement on the angular momentum for the circular orbits of

hydrogen. We shall not trace in detail the work along these lines: for this

the reader is referred to Sommerfeld s Atombau und SpeJctrallinien and to

Van Vleck s Quantum Principles and Line Spectra.

The theory was quite incomplete, however, in regard to the details of the

interaction of the atom with the electromagnetic field. It gave no definite

basis for the calculation of the relative or absolute intensities of the spectral
lines. It also failed to give satisfactory results when attempts were made to

calculate the energy levels of atoms containing more than one electron.

Numerous attempts were made to calculate the energy of the lowest state of

helium but without securing agreement with the experimental result.

Evidently Bohr s principles had to be regarded as provisional indications

of the direction in which a more satisfactory theory was to be sought. The
unsatisfactoriness of the theory came more and more into the foreground
in the early part of the 1920-30 decade after almost ten years in which
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physicists were busy making such progress as was possible with the original
Bohr theory.

This was the period just preceding the discovery of the formalism of

quantum mechanics, the discovery which has been so extraordinarily
fruitful for all parts of atomic physics in the past eight years. In this period
much was done in the study of atomic spectra and the formulation of the

results in the language of the Bohr theory. The most important theoretical

development was Bohr s correspondence principle. This emphasizes that the

laws of atomic physics must be of such a character that they agree with the

classical mechanics and electromagnetic theory in the limit oflarge quantum
numbers. This principle was able to make much more definite some of the

results ofthe previous theory in the way ofspecial calculations in particular

it gave an approximate method of calculating the relative intensity of

spectral lines. Its successes in such special applications were sufficient to

create confidence in the principle. What was much more important than the

special applications was the use of the principle as a broad general guide in

the attempts to formulate a more complete set of laws for atomic physics*

The important problem before theoretical physics was thus the develop
ment of a rational system ofquantum mechanics. The earlier work is usually

referred to as quantum theory: it consisted of a few quantum postulates

patched on to the classical kinematics and dynamics. Byquantum mechanics
we mean the much more unified theory of atomic physics which we owe to

de Broglie, Heisenberg, Schrodinger, Dirac, and others. We shall give just a

sketch of the origin of the new theory. It developed rapidly from 1925

onwards, at first along two quite different lines which were quickly brought
into close relationship.

De Broglie built his work on an analogy, due to Hamilton, between the

laws of mechanics and the laws of geometrical optics. He was led to the

formal conclusion that a wave motion is associated with the motion of a

particle such that if the momentum of the particle is p in magnitude and

direction, the associated wave is propagated with a wave-number a related

to p by the equation
p= JIG.

This was suggested by the equation E= hv together with the fact that in

relativity theory E is the time-like component of a four-vector ofwhichp is

the space-like part, while v is the time-like component of a four-vector of

which is the space-like part. This suggestion was made in 1924. Something
over a year later it was taken up by Schrodinger and developed in his famous

series of papers on wave mechanics. Very roughly the idea is that just as

geometrical optics is adequate for phenomena in which all apertures are

large compared with the wave-length of light otherwise diffraction effects
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are important so also classical mechanics is adequate where the linear

dimensions involved are large compared to h/p otherwise effects akin to

diffraction are important: these are the special effects which we find in the

region of the quantum phenomena of atomic physics.

At the same time Heisenberg took a decisive step in the formulation of

matrix mechanics as a definite realization of the correspondence principle

programme. The initial step was to regard the atom as characterized by &n

ensemble of quantities of the type Pnm e2flTiv^i

9
in which Pnm gives the

amplitude of a classical harmonic oscillator whose intensity of radiation and

type of polarization is the same as that ofthe light offrequency vnm from the

actual atom. This double array of quantities, for all values of n and m, was

regarded by Heisenberg as a single mathematical entity. By treating it and

other quantities related to the atom s structure by the mathematical rules

of matrix algebra it was found that a definite formulation of the laws of

quantum mechanics could be given in accordance with the correspondence

principle. In a few months the mathematical equivalence of Schrodinger s

wave mechanics and Heisenberg s matrix mechanics was established. The

work of Jordan and of Dirac led to a formulation of a single mathematical

system of quantum mechanics. This is the formulation in terms ofwhich all

current work of importance in quantum physics is expressed to-day.

During this period the study of atomic spectra was being actively pushed
on. After the study of series spectra of the alkali-likp metals in terms of the

Bohr theory the next important steps were the empirical discovery by Land6

of the laws of the Zeeman effect and the discovery and extensive study of

related groups of lines called multiplets in complex spectra. The modern

study of multiplets was begun by Catalan. The multiplet structure and the

problems of the anomalous Zeeman effect called for an essential generaliza

tion of the electron-orbit model which was supplied in 1925 by Uhlenbeck

and Goudsmit by postulating an intrinsic magnetic moment and angular
momentum for the electron. This spin hypothesis quickly cleared up

many difficult points, so that it at once gained acceptance.

In the pre-quantum-mechanical period the general method of working on

a detailed question in the theory of atomic spectra was to calculate from an

assumed model by means of classical mechanics, and then to try to alter the

formulas so obtained in such a way that the change was negligible for large

quantum numbers but was of such a nature that it brought about agreement
with experiment for small quantum numbers. It is really remarkable how
much of the modern, theory of line spectra was developed in this way.

Important contributions were made by Pauli, Heisenberg, Hund, and

Russell. There was developed a vector-coupling model for complex atoms

in which the quantization of the angular momenta of the individual
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electron orbits and of their vector resultant played a dominant role. To this

period also belongs the discovery of the important exclusion principle of

Pauli according to which no two electrons in an atom may have the same set

ofquantum numbers. This first found a rational place in the theory with the

advent of quantum mechanics. As an empirical principle, however, it was

of the greatest importance, especially through the work ofHund in predict

ing the general structure of complex spectra and extending the theory of the

periodic system of the elements as begun by Bohr.

Thus it happened that by ingenious use of the correspondence principle a

great deal of the modern theory of atomic spectra was worked out without

the aid of quantum mechanics. But that does not mean that the new

mechanics is without importance for our understanding of line spectra, since

the results obtained were not part of a closed structure of definite physical

principles, but were obtained in semi-empirical ways from consideration of

a formulation of the theory that was only true in the limit of large quantum
numbers. Moreover, not all the problems of interest could be handled in

this way, so there were detailed calculations on which to test the quantum-
mechanical method as well as the task of securing from definite calculations

by the new methods those results which had been cleverly guessed with the

aid of the correspondence principle. This application of quantum mechanics

to the atomic model has been the programme of research in the theory of

atomic spectra from 1926 onwards. In spite of the mathematical com

plexities, it became clear in the next five or six years that the quantum
mechanics of Heisenberg, Schrodinger and Dirac when applied systematic

ally to the study of the nuclear model of the atom is adequate to give an.

accurate and complete unification of the great amount of empirical data

accumulated through analyses of atomic spectra. Naturally in so short a

time it was not possible to make precise and detailed calculations of the

system of energy levels of all atoms, but enough has been done to give rise

to a general conviction that the theory is quite adequate for the interpreta

tion of atomic spectra.

Much remains to be done in the way of precise and detailed calculations

and it may well be that when these are made it will be found that such an

estimate ofthe power and scope ofour present theoreticalknowledge is over-

optimistic. Complete as the general picture seems at present, there may well

be lurking somewhere important residual effects, like the advance of the

perihelion ofMercury in celestial mechanics, which will necessitate essential

alterations in the theory. At present the theory exists in a somewhat closed

and complete form, so that it is possible to give a unified deductive treatment

of atomic spectra in terms of the quantum-mechanical theory of the nuclear

atom. That is the programme of this book. Future development in this field
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may be merely a story of the filling in of details without essential change in

the present views. Or it may be that essential difficulties will appear,

requiring radical revision ofthe present theory. In either case the time seems

ripe for taking stock of the rapid developments of the past decade in order

to prepare ourselves for the completion of the study of line spectra of atoms

in the experimental and theoretical studies of the future.

At present there are several systematic accounts of the subject of line

spectra and their theoretical interpretation. The most important are

SOMMEBFELD, Atombau und Spektrallinien, F. Viewcg, 1931;

HITND, Liniensgektren und periodisches System der Mlemente, J. Springer, 1927;
PATJMNG and GOUDSMIT, The Structure of Line Spectra, McGraw-Hill, 1930;
RTTABK and UBEY, Atoms, Mokcules and Quanta, McGraw-Hill, 1930;

GIBBS, Line Spectra of the Elements, Rev. Mod. Phys. 4, 278 (1932);

WHITE, Introduction to Atomic Spectra, McGraw-Hill, 1934.

All except the last of these are written from the standpoint of the

correspondence principle. In this book we make no attempt at following

the historical order. We have confined our attention to the historical

developments to the brief sketch of this introductory chapter. Likewise

we make no attempt at a complete account of the formulation of the

principles of quantum mechanics, as there are now in existence several

works on this subject. Most important among these are

BIBAC, Quantum Mechanics, Oxford University Press, second edition, 1935;
VON NEUMANN, Mathematische Qrundlagen der Qitantmmachanik, J. Springer, 1932;
EEENKEL, Wave Mechanics, Advanced General Theory, Oxford, 1934.

More elementary, and hencemore suited to a first approach to the subject, are

SOMMEBFELD (translation by BEOSE), Wave Mechanics, MetBuen, 1930;
BOBN and JOBDAN, JSlementa-re Quantenmechanik, J. Springer, 1930;
ERENKEL, Wave Mechanics, Elementary Theory, Oxford, 1932;
CONDON and MOBSE, Quantum Mechanics, McGraw-Hill, 1929;
MOTT, An Outline of Wave Mechanics, Cambridge University Press, 1930.

In order to make this book more useful for independent reading, however,
we haTe opened the detailed discussion with a brief account, in the next

chapter, of the principles of quantum mechanics. This account is intended

simply as a review of principles used throughout the rest ofthe work and as

a repository of the theory in convenient form for reference. The succeeding
two chapters are devoted to the presentation of special results from the

general theory which are used throughout the book; the detailed develop
ment of the theory of atomic spectra begins with Chapter v.

We wish finally to make a few remarks concerning the place of the theory
of groups in the study of the quantum mechanics of atomic spectra. The
reader will have heard that this mathematical discipline is of great import
ance for the subject. We manage to get along without it. When Dirac
visited Princeton in 1928 he gave a seminar report on his paper showing the

connection of exchange energy with the spin variables of the electron. In
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the discussion following the report, Weyl protested that Dirac had said that

he would derive the results without the use of group theory, but, as Weyl
said, all of Dirac s arguments were really applications of group theory.

Dirac replied, &quot;I said I would obtain the results without previous know

ledge of group theory.&quot;

That incident serves to illustrate our attitude on this point. When a

physicist is desirous of learning of new theoretical developments in his

subject, one of the greatest barriers is that it generally involves new mathe

matical techniques with which he is apt to be unfamiliar. Relativity theory

brought the necessity oflearning tensor calculus and Riemannian geometry.

Quantum mechanics forces him to a more careful study of boundary value

problems and matrix algebra. Hence ifwe can minimize the amount ofnew

mathematics he must learn in order to penetrate a new field we do him a real

service. WeyFs protest to Dirac is certainly also applicable to this book. But

so is Dirac s answer. Many things which are done here could be done more

simply if the theory of groups were part of the ordinary mathematical

equipment of physicists. But as it is not, it seems like putting unnecessary

obstacles in the way to treat the subject by a method which requires this

equipment. On the other hand the pure mathematician studying a new

branch of physics is likely to take most delight in the fact that the theory

exemplifies parts of pure mathematics which have been hitherto rather

devoid ofphysical applications. To him our plan is not as satisfactory as one

which shows how the theory of the structure of the atom is related to the

abstract theory of groups.

This does not mean that we underestimate the value of group theory for

atomic physics nor that we feel that physicists should omit the study of

that branch of mathematics now that it has been shown to be an important

tool in the new theory. It is simply that the new developments bring with

them so many new things to be learned that it seems inadvisable to add

this additional burden to the load.

For those who wish to regard the theory of atomic spectra from the

standpoint ofthe theory ofgroups there are three books available at present:

WEYL (translation by ROBERTSON), Group Theory and Quantum Mechanic*, Methuen, 1931;

WIGNEB, Qruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,

F. Vieweg, 1931, T , T -

VAN DEB WAEEBEN, Die gruppenthe&retische Metlioden in der QuantenmechamJc, J. Springer,

1932.



CHAPTER II

THE QUANTUM MECHANICAL METHOD
The formulation of the laws of quantum mechanics which is most suited to

our purpose is that due to Dirac, and discussed at length in his book.* We
shall review in brief such of this formulation as we shall need, giving page
references to Dirac, where a fuller account may be found. This will be

followed by a discussion of matrix mechanics, perturbation theory, and

related subjects.

1. Symbolic algebra of states and observables.

In this section the principles of the theory will be set down in terms of the

properties of certain abstract symbols in a manner corresponding to the

purely symbolic treatment of vector analysis which is independent of any
coordinate system.
The state of a system (Dirac, p. II) is described by a quantity called

&amp;lt;]*

which is analogous to a unit vector in a space of a great many (in general an
infinite number of) dimensions (p. 1S).| 4* has as many components as the

system has independent states. In any given representation the components
of

4&amp;gt;

are ordinary (in general, complex) numbers. The sum of two ij/s is

another fy whose components are the sums of the components of the two

tp s. The product of a ^ by an ordinary number c is a ty whose components
are c times those of the original *\&amp;gt;.

Two states are not considered to be distinct unless the tys which describe them
are linearly independent.

Since the components of
t|&amp;gt;

are allowed to be complex, and only real

numbers may occur in the interpretation of the theory, we introduce $, the

symbolic conjugate imaginary of 4.J if is not a vector in the same space as

[*, but is a vector in the dual space. Its components are the ordinary com
plex conjugates of the corresponding components of |*. Since

t|j and $ are

vectors in different spaces, there is no place in the algebra for the addition of
a

*J&amp;gt;

and a $, The distinction between
&amp;lt;|*

and $ is more fundamental than that
between ordinary complex conjugates; there is no sense in which we can

split 4* into a real and an imaginary part.
* DIRAC, Quantum Mechanics (page references are to the second edition). For a mathematicallymore rigorous formulation see VON NEUMANN, Mathematische Grundlagm der (faantenmechanik.
f We shall in this chapter use bold-faced type for symbolic quantities, reserving ordinary type

for functions and operators in the Schrodinger scheme and for ordinary numbers. Thus confusion
between the symbolic t|&amp;gt;

and Schredinger s ^ function will be avoided.
J Dirac uses

cj&amp;gt;

in place of $, but we prefer the latter notation because it is more symmetricaland more easily translated into the Schrodinger representation. Furthermore, in subsequent
chapters we shall not restrict ourselves to the letter

&amp;lt;|*

to represent a state, but shall at times use
different letters for different states.
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We now suppose that any 4* &&d any (j&amp;gt;

have a product which is defined as

the analogue of the scalar product of two vectors in vector analysis and is

therefore an ordinary number, in general complex (p. 22). This product will

by convention always be written with the $ first, e.g. 4v*K&amp;gt;
where the sub

scripts denote different states of a system. It follows, then, that 4*?4*s an(^

$s4 r are complex conjugate numbers, and that tp^r is real and positive;

unless otherwise stated we shall take all i]/s to be normalized. Hence, for

any r and s,

In observing a system experimentally we build an apparatus on a macro

scopic scale which interacts with the system by a certain set of operations,

resulting in a scale- or pointer-reading. The essential feature of classical

physics has been that we have expected to be able to formulate the laws of

physics in terms of functional relationships between the pointer-readings

given by various sets of observing apparatus. All of physics and exact

natural science has proceeded along such lines hitherto. Quantum mechanics

does not do this. Any set of experimental apparatus and operations does not

appear in the theory simply as the source of certain pointer-readings which

bear a direct functional relationship to other sets of pointer-readings.

Instead it appears as a quantity of a more complicated sort about to be

described. Thus we are dealing not merely with a new set of laws but with an

entirely new mathematical canvas on which to represent these laws. In this

respect the quantum mechanics is a much more far-reaching departure from

classical physics than was the theory of relativity.

In an experiment we are generally concerned with determining, directly

or indirectly, the particular number which expresses the value ofa dynamical

variable, e.g. the position or momentum of an electron, at a particular time.

Any such dynamical variable will be called an observable, and will be repre

sented in this theory by a linear operator a (p. 24). An observable in the

mathematical theory is a rule for acting on any &amp;lt;p

and converting it into

another fy. In this respect, it is analogous to a tensor of the second rank, or

to the dyadic of Gibbs.

We denote the result of operation of a on^ by a^, where ai|&amp;gt;
is another i|*.

We need make no provision for the operation of a on $.* The conjugate

imaginary to
a&amp;lt;|

will be written as
oij&amp;gt;

. Linearity of a means that we have

a
(w\&amp;gt;r+ bfys)

=
aat|&amp;gt;r + 61&amp;gt;8 ,

where
&amp;lt;|&amp;gt;f

and
r}&amp;gt;s

are any two states and a and b

are ordinary numbers. We define the sum, 0^+ *%, of two observables by

(ai+ a2)4 = a1^ + a24&amp;gt;,

where fy is arbitrary. The product, a^, of two

observables is defined by foo^-a^oyl*); in general *&**&. Since

* Dirac does provide for the operation of a on $, writing &amp;lt;fa

=
at4&amp;gt;;

see equation (2).
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oil&amp;gt;
is another

|j, $rwfy8
= $r (wl&amp;gt;8 )

is an ordinary number. The observable

(Hermitian-) conjugate to a, denoted by a 1

&quot;,

is defined by the equation

(2)

where the two states r and 5 are arbitrary (p. 29). The relation between a and
a 1

&quot;

is the same as that between ordinary complex conjugates; (ia)*= ia 1

;

there is no rule against adding a and af
. An observable a is said to be real if

* - a
&amp;gt;

1* 1

for all states r and s. An observable a is said to bepurely imaginary ifa 1
&quot; = a;

such an observablemay be written as ip, where p is a real observable.* It can
be shown from (2) that

hence if c^ and a2 are two real observables the commutator (oc^
- a2a1 ) is a

purely imaginary observable (p. 29), if oc^ is also real this commutator
vanishes.

We now make the important physical postulate (p. 30) that a state for

where a is an ordinary number, is characterized by the fact that the observ
able a has the value a. That is, that a measurement of the observable a with
the system in the state

ij&amp;gt;r will certainly give for the result the number a. For
a real observable a the number a will be necessarily real, as can be shown by
multiplying (5) by $r to get $r k= a$rfyr

= a [from (
1 )] . Here $rai|;r is real

by (3), so a is real.

The possible values of an observable a, i.e. the possible results of an
observation of a, are the ordinary numbers a for which the equation in ^,

a4 = a
4&amp;gt;, (6)

has solutions (p. 30). These are called the allowed, proper, characteristic, or

eigenvalues of a, and may form a discrete set or a continuous set ofnumbers.f
We shall follow Dirac in calling the

&amp;lt;J/s
which satisfy this equation the

eigen-tys and the states which they denote the eigenstates ofthe observable a.

We shall speak of an eigen-^ which satisfies this equation for a given a as

belonging to the eigenvalue oc
,
and denote it by 4&amp;gt;(a ). That is,

at|&amp;gt;(oc )
= oc

4&amp;gt;(a ). (ya )

The compleximaginary to
i}&amp;gt;(a ) we denote by $(a ). This satisfies the relation

* The operators corresponding to real and purely imaginary observables are said to be Hermitianand ant^Henmtian respectively, because of the Hermitian and anti-Herinitian character of their
matrices ( 7). Similarly, at is called the Hermitian conjugate of oc because its matrix is the
Hermitian conjugate of the matrix of a.

f The whole set of eigenvalues is often called the spectrum of a.
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There may be several, say da,, linearly independent tp s belonging to the

same eigenvalue a . In this case the value a will be said to be da -fold

degenerate, and the different 4Ka )
s ^^ require another index which takes

on the values 1, 2, ,.., da - for their complete specification.

Now if one makes observations of a on a system in a state i{* which is not

an eigenstate of a, one does not always obtain the same value, but observes

the various proper values of a with certain probabilities. We now make a

second physical postulate, viz. that the average of the values of a obtained

in this way is the number tpa4 which is characteristic of the state 4* (p. 43).

4 is here assumed normalized in the sense of (1).

For a real observable this average value is seen from (3) to be real for any
state

4&amp;gt;* Moreover, by writing a = ar 4- ia$ ,
where ar and c^ are real observ-

ables, it is seen that a necessary condition for the reality of $*]* f r aU
4&amp;gt;

*s

the vanishing of ai . Since the results of physical observation are real for all

states
4&amp;gt;&amp;gt;

we conclude that all physically measurable quantities are real

observables.

PROBLEMS

1. Show that the allowed values of any function /(a) expressible as a power series in a are

/(a ). This can be generalized to other functions (p. 38). Hence show that the first physical postulate
above is a special case of the second.

2. Prove that two real observables commute if and only if their product is real.

3. Show that the observable SaS 1
(where S^S-SS&quot;1 ^ 1) has the same allowed values as a,

and find the relation between the eigen-^ s of a and those of 5aS~x
.

2. Representations of states and observables.

We shall first show that the eigen-ij/s ofa system belonging t0 two different

allowed values ofa real observable are (unitary-) orthogonal in the sense that

$(a )4(a&quot;)
= unless a = a*. (1)

To prove this, observe that

(from I 2
7a)

). (from 1 23 and I2
7b)

Therefore (a -a&quot;)$(oc )&amp;lt;]&amp;gt;(a )
= 0; hence the theorem (p. 33).*

We now assume that the eigen-tj/s of any real observablef form a com

plete system in which we can make a Fourier expansion of an arbitrary fy

(p. 34). This amounts to assuming the whole of a kind of generalized Sturm-

Liouville theory at one step; hence much needs to be filled in here by a study

of exactly what classes of
*I&amp;gt;

s can be so expanded.
* Note that whenever the combination $(oc )a arises, this may be replaced by oc

^&amp;gt;(yf)
if a is

a real observable.

f Note that these considerations hold only for real observables; the eigen-ij/s of a general
observable do not form an orthogonal set. Although we shall have occasion to employ non-real

observables as an aid in calculation, we shall never have occasion to determine their characteristic

values or functions, since these lack physical significance in quantum mechanics.
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Consider first the case in which a has a purely discrete spectrum. If the

value oc is da&amp;gt;~fold degenerate, we shall choose the da, linearly independent

states belonging to a normalized and mutually orthogonal This we may do

by a Schmidt process* since any linear combination of states belonging to oc

will also belong to a . Denote these d^ states by 4Ka/r ) for r = 1, ..., d^.

We then have, according to these requirements, the relations

$( r ) t^a* r&quot;)

= 8(a , a&quot;) S(r , r&quot;) (2)

satisfied. Here (a X )
= Sa ar is a function of the discrete set of points

representing the allowed values of a which is zero if a ^ a&quot; and unity if

oc = a&quot; (the Kronecker delta). The assumption is, then, that any state ty may
be expanded in terms of these states

4&amp;gt;(oc
r ). We shall write the expansion

coefficient as (a r
| ), placing it after the eigenstate:

4*
=StKa r )(aV| ). (3)
a r

The blank space is reserved to characterize the $ which is being expanded;

for example we write

aV

Consider the state
P4&amp;gt;(

a
&quot;

r&quot;)
which results from the action of the observ

able p on
vl*(oc&quot;r&quot;).

This state can be expanded in terms of the complete set

*]&amp;gt;(aV).
For this expansion we adopt the notation

pt|&amp;gt;(a&quot;r&quot;)

= St|;(aVO(aV
/

| j8|a
/

V&quot;). (5)
a r

Before proceeding further with the algebra of this expansion theory we shall

show how we may obtain a significant choice and characterization of the

different states belonging to the degenerate level a . Let us choose an

observable p which commutes with a. We observe that

a&quot;r&quot;

from (5), while

If a(3
= pa, the coefficients of

i}&amp;gt;(aV)
on the right of these two equations

must be equal; hence (oc

/

-a&quot;)(oc

// /
|j8|a

r
/

)
= 0, from which we draw the

important conclusion that

(oc
V ||aV)=:0 unless oc = a&quot;. (pa-ap-0) (6)

Let us now set ourselves the problem of finding the eigenstates of p. Denote

such a state by 4&amp;gt; ( j3 )
and let (4) represent its expansion we must then deter

mine the coefficients (oc
r

|/3 ). Expanding the allowed values equation

* See for example, COTJRANT and HILBEBT, Hetlioden der MathematiscJien Physik, p. 34.
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we obtain

S *l(*V)(aV|/J|oe*r )( r|/3 )
=Sj8XaV)(V|j8 ),

a* r* a r a r

whence S (a r
|j8|a r )(&quot;r |j3 )

=
j8 (a r

|/5 ) for all
a&amp;gt;

. (7)
*

TMs set of homogeneous linear equations for the coefficients (

reduces when we use the special property (6) of p to the simpler set

Sta f ljSla OtaVljS J^jSXotVljSO for all a ,r . (8)
r&quot;

Here all the coefficients in a given equation refer to the same eigenvalue of a.

Hence we may consider independently the da&amp;gt; equations corresponding to

the eigenvalue a . These da/ equations determine the direction* of that part

of
*I&amp;gt;(/O

which lies in the c a,-dimensional subspace characterized by a . Let

us find the solutions which lie wholly in this subspace, i.e. let us set
(cc&quot;

r&quot;

\ ft)

equal to zero unless &amp;lt;x&quot;

= ot . In order that we may find a non-vanishing

solution of this type, the determinant

must vanish.f Setting this determinant equal to zero gives an equation of

dtf
th

degree in /T whose roots are the d^ eigenvalues $ which are consistent

with the conditions assumed. To each of these roots belongs an eigenstate of

p lying wholly in the subspace characterized by a . To a multiple (da^-fold)

root @ will belong d^p linearly independent eigenstates lying in this sub-

space. Since all the eigenstates ofp are given by (8), and since it is clear that

we have found a complete set of solutions of (8), we have found a complete

set of states
4&amp;gt;(a j5 ) which are simultaneously eigenstates of a and of p. If

there is still a degeneracy in these states, we may choose a third observable

y (independent of a and p in the sense that y is not a function of a and p)

which commutes with both a and p. We may by a process similar to the

above find a complete set of eigenstates ofy which are simultaneously eigen

states of a and p, i.e. of the form
ty(&amp;lt;y! /J y

7

)- We continue to introduce in

dependent commuting observables until we find no degeneracy in a simul

taneous eigenstate of aE of them. The number of such observables is the

quantum-mechanical analogue ofthe classicalnumber ofdegrees offreedom.

Thus a calcium atom with 20 electrons and a fixed nucleus will be found to

* A set of linear homogeneous equations determines only the ratios of the unknowns, ie. the

direction of a vector but not its magnitude. But because of the normalization condition, an eigen

state is determined by its direction except for an arbitraiy phase factor e^ f

f See, e.g., BOOKER, Higher Algebra, p. 47.
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require 80 quantum numbers for the complete description of its state. A set

of observables, say Yi&amp;gt; Ya &amp;gt;

*
&amp;gt; Yfc &amp;gt;

*n fcerms ofwhose simultaneous eigenstates

we can describe the state of a system completely, is said to be a complete set.

We shall denote this set of observables by F for short, and shall write the

general state characterized by th&quantum numbers y[ , y^, .., yk as 4(F ).*

We can choose a complete set of observables in various ways since any in

dependent commuting functions 81? 82 , ..., 8
7j
of the y s w^ &so form a

complete set, which we shall denote by A.

Let us now return to a consideration of the algebra of representations in

terms of the eigenstates ofsuch complete sets of observables. A general state

4* has the expansion [cf. (3)]

The expansion coefficients are given explicitly by multiplying with $(T
f

):

OH )=$(r*)4*. (ii)

For the complex imaginary equation to (10) we shall use the notation

$=S( inftr), (12)
r

r

where ( |r )-(P| )
=

$&amp;lt;[(!&quot;). (13)

The set of eigenstates is a set of orthogonal unit vectors. The component

(P | )
of

4&amp;gt;

is given by the scalar product, in the proper sense, of 4* with the

unit vector
t|&amp;gt;(r ).

If the
t|&amp;gt;

we are expanding is an eigen-i|* of any set of observables A, say

4&amp;gt;(A ), we use the following convenient notation, which is seen to be com

pletely self-consistent:

(12 )

These equations express the (unitary^) transformation from one system of

eigenstates to another; hence (F |

A
)
and (A | I&quot;)

are known as transformation

coefficients.

* The normalization condition satisfied by the eigenstates ofsuch a set of observables is given by

As a matter of convenience we shall write this product of S s as
8(y^..y^; y^yj!) r simply

S(F,r ).

f A unitary transformation is a transformation from one set of normalized (unitary-) orthogonal
states to another such set.



22 REPRESENTATIONS OF STATES AND OBSERVABLES 19

The observable a is characterized in the T scheme by the set of numbers

(Hall&quot;) defined [cf. (5)] by*

a&amp;lt;KP)
= *(n(na|P), (14)

and given explicitly by

The square array formed from these numbers as P and P range over the
allowed values ofthe observablesT is called the inairix of a, and the numbers
themselves are called matrix elements or components (cf. 7 2

).

In the r scheme the matrix of any one of the y s, say y^, is diagonal [i.e.

(P|nl r &quot;)
is zero unless P = P ]. Since Yi^(P) = yi^(P)&amp;gt;

we have from

(15) that (P^n|P) =%Srr*. The matrix of an observable a which commutes
with Yi is diagonal with respect to yi3 i.e. (P|a|P )

Is zero unless yi
=

yj.
This follows at once from (6).

From the definition 1 22 it follows that the elements of the matrix of af

are given by
(rV|r*)-(E&amp;gt;|r ). (16)

The matrix ofaf is the Hermitian conjugate ofthe matrix of a. The matrix of
a real observable, for which

(P|a|n(r|a|P), (17)
is said to be Hermitian.

PROBLEMS
1. Show that the relation between the components of ij*

in two different representations is

). (18)

2. Show that the relation between the matrix components ofa in two different representations is

(A |oc|A&quot;)
= S (A |P) (Flam (r*|A*). (19)

FT&quot;

3. Derive the following identity, which is characteristic of a unitary transformation

(20)

4. Show that the sum of the diagonal elements (the trace) of the matrix of an observable is

independent of representation, i.e. that

|A ). (21)
A

and that this sum is just equal to the sum ofthe characteristic values of the observable a, weighted
by their degeneracies. (The Diagonal-Sum Rule)

5. In the T-scheme we can represent the action of a on any fy [cf. ( 10)] in the following fashion:

)- (22)

* In this notation one obtains a complete analogy between the form of a quantum-mechanical
observable and Gibbs dyadic if one writes a as the operator

Here the fact that the
t{&amp;gt;

and the
&amp;lt;Jj appear in the order opposite to that conventional for multipli

cation indicates that this is not their scalar product but that they form a unit dyad.
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6. Show that if a anticommutes with y,-, the matrix element

(r la|r*)=0 unless yj= -y*. (aY8
- +Ya=0) (23)

7. Show that the elements of the matrix of the product ap of two observables are given by

(Flofln-S (Flam (r lflr*). (24)

8. Consider a set ofm states i^rj), iKTj), ..., 4&amp;gt;(IT)
and a set of m states

4&amp;gt;(Ai), ....

derived from these by a unitary transformation:

Consider also a set of n states ^(Pj), ..., 4W) and a set ^(Aj), ..., ^(A?) derived from these by

a unitary transformation. If a is any observable, show that

m n m n

S S|(rt||r!)| =S Sl(At|a|Ai)|*. (25)
8

(The Principle o/ Spectrottcopic Stability)

9. For the states of the preceding problem, show that if

where K is a constant independent of i and
jf,

then also

S (AiM Aj) &amp;lt;Ai|a|Ai)
=*

8&amp;lt;,.

fcl

3 B Continuous eigenvalues and the SchrSdinger representation.

These formulas must be modified in the case of an observable w whose

spectrum of eigenvalues is not wholly discrete, but is wholly or partially

continuous. An eigennj* belonging to a value w lying in the continuous range

is to be normalized according to

$(w )ty(w )
= *(v/ -w*) 9 (1)

where 8(#) is an improper even function of a? defined by

f

J
(2)

(Dirac, Chapter iv, which see for a complete discussion of the S function).*

The expansion of an arbitrary t|&amp;gt;

in terms of the eigen-^ s ofw will now be

of the form
)(w

&amp;gt;\
) + (w )dw&quot; (w&quot;\ ), (3)

where w ranges over the discrete spectrum, w&quot; over the continuous spec

trum of w. Here
(w

/fl

\
)
= $(uf)fy

for all wm
. If w1&quot;

is in the continuous spectrum this follows, on multi

plication of (3) with $(w
m

), from (1) and the relation

f(x)S(x~-a)dx=f(a) (4)
f

* The 8 function as used in connection with continuous spectra is to be regarded as a convenient

abbreviated notation which permits simplification in the Handling of more complicated mathe

matically rigorous expressions. This treatment of the continuous spectrum, although able to lead

one into trouble, is certainly the most convenient; the 8 function may be in general treated as an

exact symbol when integrated out according to (4).
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(Dirac, p. 73). In general, a similar replacement of integration over the

continuous spectrum for summation over the discrete, and of 8(w
r wn

)

for Sa/a- must be made in the preceding discussion in the case of a continuous

spectrum.
The most important instance ofan observable with a continuous spectrum

is the coordinate x, which we assume to have a completely continuous range

of allowed values. For a single particle in three dimensions x, y, and z form

a set of commuting observables (complete except for the peculiarity of

electron spin which we shall later introduce as a fourth commuting
observable a having just two eigenvalues). For n particles we have the set

#1 &amp;gt;

J&amp;gt;i *i &amp;gt; &amp;gt; *n &amp;gt; yn &amp;gt;

zn - We shall denote this whole set of observables by
x for short, writing

$(tf)i\&amp;gt;(x*)
= 8(tf-tf), (5)

where S^-^J^S^-Oa^-^S^-O ...8-&amp;lt;).

We shall usually denote an allowed value of the above set of observables

merely* by x. The expansion of an arbitrary fy i& terms of the eigen-i|/s of

x is then written

)dx, $=( \x)$(x)dx, (6)t

where (x\ ) and ( \x) are complex conjugate functions of x.

This representation in terms of the eigen-ij/s ofx (the Schrodinger repre

sentation) is the most useful of all representations, since from it is derived

the Schrodinger equation which has proved to be a most powerful tool in the

explicit solution of quantum-mechanical problems. It will be noted that the

function (x\ ) completely determines ty. This function
(o?| )

is called the

Schrodinger representative of 4 and will be written as (the Schrodinger if*

function), or $x if we wish to indicate the independent variable explicitly.

Coordinates will throughout this work be relegated to the position of sub

scripts when they need be written, the space on the line being reserved for

the more important quantum numbers. Thus the function (x\T ) which is

the Schrodinger representative of fy(T
f

) will be written as ^x(T
f

) and called

the (Schrodinger) eigen-*/r belonging to F. Since iff
determines

t|&amp;gt;,

we can

equally well speak of a system as being in the state fy or the state
J/T,

the state

4(r )
or the state ^(F). In this notation the expansion (6) becomes

* There will be no confusion with the Schrodinger operator x because of the omission of the

prime here, since no distinction need be made between the operator x and the allowed value x in

the Schrodinger scheme.

f dx=dxidyi dzt ... dzn .
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If a is an observable, wty is a
4&amp;gt;

and will have a Schrodinger representative

which we shall write as
oc&amp;lt;/&amp;gt;,

i.e. we shall write

(8)*=

This equation defines the operator a in the Schrodinger sense as that func

tional operator which acts on the function
&amp;lt;/r

which represents ^ and turns

it into the function wft which represents aty*

We shall now prove two theorems which show the great similarity in

behaviour of4 and ^ that justifies their being called by the same letter.

I. Any linear relation which holds between ty$ holds also between their

representatives. This follows from the fact that the representative of the sum

of two tjj
s is the sum of the representatives of the individual

&amp;lt;|/s;
that the

representative of cfy is c times the representative of
&amp;lt;|&amp;gt;;

and that if two 4 s

are equal, .their representatives are equal.

II. The scalar product of two
i|&amp;gt;

s equals the integral of the product of their

representatives in the sense that if 4(1) is represented by i/r(l) 3 ^(2) by &amp;lt;/r(2),

tlien
(10)

The proof of this follows from (4), (5), and (7),

Now the eigenstates 4&amp;gt;(F)
are normalized (2

2
9) according to

$(r )4&amp;gt;(r HSrr*
;

hence the ift(Y )
have the normalization (theorem II)

* This notation assumes that the representative off(x) t{j,
where /(x) is any algebraic function

of the set of observables X9 is just the function /(x) t^.
This is easily seen to be the case:

/(*)*&. (9)

j- If w is an observable which has a continuous range of eigenvalues, its eigenstates must be

normalized according to (1) instead of 1 2 1 and integrals must be substituted for sums in the

expansions in terms of
*/j(w

f

). In this case we obtain for the normalizing condition

-u?) (12)

in place of (11). This normalization
Qfi//x(w ) is accomplished ifwe choose the normalization factor

in such a way that the set of eigendifferentials

)
= -

f

W
tVAJw

(13)
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Any 4&amp;gt; may be expanded in the T f scheme according to

r

Hence (theorem I) $=?&amp;gt;$(? ) (PI ), (16)

where* (P| )
= $(? )$= r )$da:. (17)

The state a 4* (I&quot;)
has the expansion

Hence the vLift(T
f

) of (8) will have the expansion

|r ) ) (is)

where from 2215 and theorem II

(19)

Finally the allowed values equation

cciK0 = a
&amp;lt;K* )

becomes the functional equation

a&amp;lt;/r(oc )
= a

&amp;lt;A(oc )&amp;gt; (20)

which is the general form of Schrodinger s equation for any observable. As

is normalized to unity in the sense of (11). The ^ s will then be orthogonal if
\iv

~
w&quot;\

&amp;gt; A, and will

for values of w chosen at the small intervals A have all the properties of a set of eigenfunctions

going with discrete eigenvalues. To see this let us evaluate the integral

[ If /W +A- A0*

/ XtAW/ ) Xx(w&quot;)

dx=
J I I ^asK) dw/

/w ,

I /&quot;i/j 4- A rici^+A r~

=4 \tJw )$& J w&quot; J w&quot; J

Now the integral over w&quot; has the value 1 for all values of w which lie between w&quot; and w&quot; -f A,
and the value for all other values of w . The whole integral then becomes

if |w -!i&amp;gt;*|=-^A.K /C

The expansion of a ^ in terms of the eigen-^ s of w may then be &quot;written as a sum over Xx(wT )&amp;gt;

where wr takes on values spaced by the interval A (this is rigorously true asymptotically as A-&amp;gt; 0) :

wr

We could define, in exact analogy, a symbolic x(w ) which would have properties similar to the

above, and it is in some such way that a mathematically rigorous treatment of the continuous

spectrum must be given.
* The set of functions ^(F ) are to be considered as a set of unit vectors in ordinary function

space (Hilbert space) in terms of which any arbitrary ift may be expanded,
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yet we hare defined the operator a only symbolically; the discovery of the

exact functional form of oc for observables that are functions of the co

ordinates and momenta was made by Schrodinger and will be the subject

of 6*.

4. The statistical interpretation.

If we make a measurement ofthe complete set of commuting observables

Yi&amp;gt; Y2&amp;gt; Yfc on a system in the state
ijj,

what is the probability P(T
r

) of

finding the values y
r

1? y^, o4* ^kis question may be answered In the

following way (Dirac, p. 65).

Consider any function /(F) of yls y2 , ..., Y&- The average value obtained

for this function when making measurements on
$&amp;gt;

is

r

On the other hand, this average value must equal

Since the last two expressions are equal for arbitrary functions /, we can

equate coefficients of each
/(I&quot;)

to obtain

p(r )=|(r | )|. (i)

Hence the probability that the y s have the values I&quot; in the state
i|&amp;gt;

is

|(r | )|

2
. Similarly the probability that the y s have the values I&quot; in a state

in which the 8 s are known to have the values A [i.e. In the state

If we now ask the probability P(x)dx that the set x of observables have

values in (to at x, we must modify the above computation to suit the case of

a continuous observable. The mean value off(x) in the state
^|&amp;gt;

is given by

from 329 and 3210. On the other hand this mean value

=
jf(x)P(x)dx.

Since/(x) is an arbitrary function of the variables x, we obtain from this the

physical interpretation of Schrodinger s
?/r

function: that $$dx is the prob

ability that the system be in the coordinate volume element between x and x+dx.

This interpretation is seen to be consistent with the normalization of ^ as

given by (3
2
11).

* Since /(F) &amp;lt;|jff&quot;) f(T ) &amp;lt;1&amp;gt;(F ), an. obvious generalization to the case of a set of commuting
observables of Problem 1, 1

2
.
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PROBLEMS
1. Show directly that S ?(!&quot;)

= 1.

I&quot;

2, Show that if a real observable a has no negative eigenvalues, then

for all 4*; and conversely that if $o&4^0 ^or a^
4&amp;gt;

^en a nas no negative eigenvalues.

3. Show that a2 + p
2
, where a and p are any two real observables, is real and has no negative

eigenvalues.

5. The laws of quantum mechanics.

We have now laid out the mathematical pattern in terms ofwhich the laws

of atomic physics are formulated. The remainder of the theory consists of

the recognition of the properties of the operators which are to represent

various observables. To a particular mode of observation with certain

apparatus is to be associated a certain operator. The laws of nature are not,

as before, the functional relations between the numerical values given by
certain experiments, but relations between the operators that stand for

various modes of observation. The recognition of what operator is to be

associated with each set ofexperimental operations has been carried out thus

far partly by appeal to the correspondence principle (as with coordinate

position and conjugate momentum) and partly by appeal to experiment (as

with electron spin). Of course the correspondence principle itself is a broad

generalization from experiment, so the known relations between operators

for physical quantities all spring from experiment.

The cartesian coordinates xl9 J13 zl9 ..., xn , yn , zn ,
or for convenience

3C15 &2 ,
... 3 #3JIJ of a system of n particles, and the conjugate momenta

Pi 9 Pz&amp;gt; -&amp;gt; Psn satisfy the following quantum-theoretic laws of nature

(Dirac, p. 91): rv V 1 w **^ *? i

L#i&amp;gt;3tyJ #i*j x^ u,

These equations are consistent with K$ and pi both having a continuous

range of allowed values. The first equation has been presupposed in using

xx , &25 xzn as commuting observables for a Schrodinger representation

in32
.

Analogous to the total energy of the system is a Hamiltonian function H,

which is the same function of the p s and x s as on the classical theory for the

* We shall use the notation [A, B] for the simple commutator AB -BA. (Dirac uses [A, B]
for (AB -BA)/i& in closer analogy to the classical Poisson bracket.) The commutator of a single

observable with the product of two is given by formulas similar to that for a derivative of a

Product =

[AB, C]=01 C]B +A[B, C] ,

2)

[A,BC]=[A,B]C+B(A,C].
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analogous dynamical system* The importance of the Hamiltonian in the

classical theory lay in the fact that through Hamilton s equations of motion
it determined the time variation of the state. That continues to be its

importance here, the dependence of the state j* on the time being given
(Dirac, p. 115) by 3

.

(3)

where dfy/dt indicates a vector whose components are the time derivatives

of the components of
t|*

in a fixed representation. In Schrodinger s notation

this becomes ^ /

(3 )

The time dependence of the eigenstates of energy is particularly simple.
One has for the eigenstate belonging to H

,

and therefore such a state merely changes its phase in time:

Corresponding equations obtain for the Schrodinger function $,(# ), In an

eigenstate of energy the average value of any observable a is independent
of the time.f This is proved as follows:

Since the probabilitythat the set ofobservablesT have the values F depends
only on the average values of all functions of the y s (

42
), this probability

is independent of the time in such a state. Because of these properties an

eigenstate of energy is called a stationary state.

PROBLEM

Show that the commutator f(x)PiPiJ(x)**iH ~ -

, (5)
9X|

where /(#) is any function of xl9 x2&amp;gt; ..., xsn expressible as a power series.

6. Schrodmger s equation.

We shall now discuss the question of the functional form of an observable
in the Schrodinger sense, as defined by 32

8:

ai}&amp;gt;= n^(x)tx.^dx,

*
However, the exact order of factors and related questions, which are immaterial in the

classical theory, are of great importance in the quantum theory, and for any particular problemmust be determined, in the last analysis, by experiment.
t If a does not involve the time explicitly.
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where a is supposed to be an algebraic function F(x, p) of xls ..., X3n ,

Pi 9 9p*n-

The Schrodinger operator for/(#) is merely f(x), as shown by 329.

Schrodinger s discovery* consisted of the observation that the proper

operator for the observable pi is ifidjdxi . This is easily shown to satisfy

the quantum conditions 52I
;
for example

hence

We obtain the operator foipjpi by letting p$ operate

Hence the Schrodinger operator for p^pi
is

( ifidjdx^ iifid/dXi), and in

general the operator for a function g(p) is g( ifid/dx).

From an extension of these considerations it is seen that the Schrodinger

operator for a general algebraic function

is a = F(x,p) = F(x,
-
iM/dx). (I)

Hence the Schrodinger equation (3
2
20)

becomes
(2)

This is a standard type of characteristic value differential equation whose

characteristic values and functions are to be determined by the use of

auxiliary boundary conditionsf on
&amp;lt;/r(oc

;

).
The original equation given by

Schrodingert was this equation for the particular case a=J?, which gives

the energy levels and eigenstates of total energy.

7. Matrix mechanics.

We have seen that by the use of Schrodinger s representation in terms of

the continuous set of allowed values of the variables x^ ,
we can obtain a

formulation of the theory entirely independent of symbolic 4 s and a s. In

* SCHBODINGEB, Ann. der Phys. 79, 734 (1926).

t See p. 143 of DIEAC for a discussion of boundary conditions. This discussion is not complete;

the governing condition must be that one find a complete orthogonal set of solutions of (2). See

VON NEUMANN S book, page 53 et seq.

J SCHEODENGEB, Ann. der Phys. 79, 361 (1926).
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the same manner the theory can be formulated in a way in which we deal

only with the matrices representing states and observables in terms of the

discrete set of allowed values of a complete set of observables T. This corre

sponds to the original matrix mechanics of Heisenberg, Born, and Jordan.*

We represent $ (or iff) by the array of coefficients (F | ) in the expansion
in terms of the ^(F ) [or ^(T )] written as a matrix of one column. That is,

4* and 4K^ ) ar represented respectively by

(P| )

)

and

When a $ is represented this way, a $ must be represented by a matrix of

one row, in order that *jy|^ niay be an ordinary number (a matrix of one row
and one column). For example, the product $(A )*KA&quot;) becomes

(1)

by the usual rule of matrix multiplicationf (cf. 22
20). In this form we see

clearly that we cannot add a 4? and a ip, and that we must form their product
in the order tjujj-

The observable a is represented by its matrix as defined in 22
, i.e. by

(P|alP) (P|a|P) (P|oc|P) ..

(P|a|P) (P|a|P) (P|a|P) ..

(P|a|P) (P|a|P) (P|a|P) ..

where by convention the first index F in (P|a|r&quot;) labels the row and the

second index T&quot; the column. If a is real, this matrix is Hermitian, which
means (cf. 22

17) that the diagonal elements are real and that the corre

sponding elements on opposite sides of the diagonal are complex conjugates.

*
HEISENBBEQ, Zeits. fur Phys. 33, 879 (1925);
BORN and JOKDAN, ibid. 34, 858 (1925);
BOKN-, HEISENBERG, and JORDAN, ibid. 35, 557 (1925).

t The product of a matrix &? with m rows and k columns and a matrix 3S with n columns and
k rows is defined as the matrix ofm rows and n columns obtained as follows :

where all the S s are over
.7
= 1, 2, ..., fc. For a discussion ofmatrix algebra see, forexample, BdoHEE,

Introduction to Higher Algebra, Chapter vi.
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It is now readily seen that all ofthe preceding equations remain true when
one substitutes for ^ s and a s their respective matrices and uses the laws

of matrix algebra. The allowed-values equation becomes

(P|a|P) (P|a|P)

a

a

a
.(2a)

Carrying out the matrix multiplication, we obtain the set of simultaneous

linear equations (cf. 2
27 et seq.)

S[(F |a|r
/

)-a
/
8r^](F|a

/

)
= for all I&quot;. (2b)

The condition that this set shall have a non-trivial solution is that the

determinant of the coefficients vanish, i.e. that

-a (r
2
|a|r

3
) =o. (3)

This determinant, though usually of infinite order, will often be such that

the only non-vanishing elements lie in sub-squares along the diagonal, so

that the infinite determinant will factor into an infinite product of finite

determinants each of which can be treated by ordinary algebraic methods.

An approximation to its solution in the case in which certain of the non-

diagonal elements may be neglected will be considered in the next section.

The roots of (3), which is called the secular equation, give the allowed values

of a. For a da/-fold root, the equations (2) furnish d^ linearly independent
sets of transformation coefficients (F |ocV) for r =

1, ..., d^. The values of

these coefficients must be chosen in accordance with the orthonormalization

condition (1): S(aV|F)(F|aV)==Srr,. (4)

These transformation coefficients determine the eigen-ij/s of a, i.e. they
determine those linear combinations of the eigen-4 s off in terms of which

the matrix of a is diagonal; hence this calculation is known as the diagonal-

ization of the matrix of a.

While the coefficients (F|A ) may be arranged into single rows or columns

to represent the matrix of 4*(A )&amp;gt;

there is a sense in which the whole square

array of (F|A )
s for all F and A may conveniently be considered as the

matrix which transforms the eigen-^ s of T into the eigen-ij/s of A. Let us

write

(F
2
|A

2
)

(F
S
|A

2
)

(5)
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The matrix on the right, which we shall write as ||(r |

A
)||,

is a unitarymatrix

in the usual sense: it has the property that its Hermitian conjugate, which

is easily seen to be the matrix ||(A |r )||
is also its reciprocal, by (1); i.e.

ll(r|A )iHi(A |nii=i ;

where I is the unit matrix.

Now if ||(r jA )|| represents the transformation from the T scheme to the

A scheme and ||(A |E )||
the transformation from the A scheme to the E

scheme, the transformation from the T scheme directly to the E scheme is

given (of. 22
18) by ||(rqEO|Hi(nA0!h!(A1 E )l|. (

6
)

The transformation of the matrix of a from the r scheme to the A scheme is

accomplished (cf. 2 2
19) by the multiplication of three matrices;

||(A I

oc
| Al| =

||(A
|
Dll II (r jal nil -|| (F&quot; | A&quot;)||

. (7)*

Suppose now that we are given the matrices of a set a, p, ,
. , . ofcommut

ing observables in the F scheme and we wish to find the transformation to

the scheme in which these are simultaneously diagonal. We diagonalize a

by (3), (4) to obtain the unitary matrix ||(r |&amp;lt;x

r
)|

. With this matrix, by (7)

we transform the matrix of p to the (a r
)
scheme. Since p commutes with a

this matrix will be diagonal with respect to a ;
hence we can find a set of

states ip(a ft s
)
as in 22

. Using (6) we find ||(F |a j8
$

)!! by the multiplica

tion of ||(r |oc&amp;gt; )ll
and

||(&amp;lt;xV|a /J
a

)\\.
This enables us to obtain the matrix

of in the a , /} ,
s scheme, the diagonalization of which gives states

4* (a
7

/? t
) etc. See 48 for an example of this procedure carried through in

detail.

8. Perturbation theory.

If we know the allowed values and statesf of some observable oc, we can

develop formally a successive approximation method for finding those of an

observable which differs but slightly from a, say the observable

/3
= a+ eF, (1)

where e is supposed to be a small number. Since eF may be considered as a

perturbation on
&amp;lt;x,

this approximation method is known as the
*

perturba
tion theory.

Let us denote the mutually distinct proper values of a by a1
,
a2

,
.... Ifnow

there is a dn-fold degeneracy in the value an
,
we shall need another index to

distinguish the different states going with this same proper value. We may
denote these states by ^(a

n
*),

where Z== 1, 2, ..., dn . Since the set ol ^r s for

a given n is determined only to within a unitary transformation, it will be

desirable to choose the members of this set in a way significant to the

* This is the equation which is usually written in the form T=
t In this discussion the ^ s and a s may be either in the symbolic or Schrodinger scheme.
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problem in hand. Let us then choose ^(oc
77-1

) in such a way that all matrix

components of the type (a
wZ
|F|a

nZ
)
are zero unless l~l . This is possible

since the transformation which diagonalizes that part of the matrix of V
which refers to the level a71 for any given set of ^(oc^ s will transform this set

of
i/f

s to one satisfying the above requirement.

Now it may be, when we have chosen the states in this way, that the com

ponents (&amp;lt;x.

nl
\ Floe

71

*) with a given n are all different as I runs over the range

I, ..., dn . It is this special case, practically the only case of importance in

applications, which we shall consider now. We shall return to the more

general case later.

The observable j8,
which differs but little from a, will have dn proper

values which coincide with a71 in the limit = 0, and which differ but little

from oc
n for small e. We shall call these dn values

fi
nl

, /3
712

, ..., P
nd

*, and shall

suppose that each ofthem may be expressed as a power series in e ofthe form

^=^ + # + 10*+..., (2)

where clearly $^ = an for all L (3)

We shall suppose the eigenfunctions which belong to these values to be also

expressible as a power series in
3
of the form

where {^
nZ
} is a linear combination of the $o(K

np
) for^p= 1, ..., dn . We shall

see that the advantage of our particular choice of ^(a
72

^) lies in the fact that

we may take ^ {^}= ^(a
7
^).

Our problem is now to determine formally the coefficients of the various

powers of in (2) and (4) in terms of the matrix components of F and the

known properties of the observable a. This we may do by equating to zero

the coefficient of each power of e in the equation

/^(n =W( (5a)

when this is expanded in the form

[a+ F -
JB{?

-
J8*

-*W -
. . .] [^ {j3*}+ W^} + e* h{?*) +...] = 0.

This gives us the set of equations:

(6a)

(8b)

* (6c )^
If we express ^K{^

nJ
] in terms of the ^(a

nr
), using the notation

=S^(a^ ){a
wT

|^}, (ic-0,1,2,...) (7)
n l

f
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we can solve these equations in succession. We have introduced the curly
braces because the ^K{^

nl
} do not form a set of orthonormal states, nor are

the {oc^ l/c*

17

} coefficients in a unitary transformation. The condition that the

0(j8* ) form an orthonormal set independent of gives us the following
conditions on these transformation coefficients:

= 8(T, id) (8a)

|

attr
} {a

*

| 0&quot;*}]

-
(8b)

Sj;{0?]a** 7{^
(80)_

where {K^|a
wT

}
=

{a
nT

|K^}.

The first equation (6a) is just the allowed-values equation for the

observable a, and gives us no new information. It tells us that if we take

j8y
= a*, {a

nr
jO

nZ
}
will be zero unless ra = w, as we have already observed.

With these facts, the second equation (6b) becomes, when expanded in

terms of the ^(oc
u/r

),

S
^(&amp;lt;x&quot;0 [(

- $f ) {a^ |

l7^- 8(n, w*) jSjf

1

{a&quot;| 0^}
n^Z&quot;

+S (a
*

| F|
!

0{
n/

|0
tt

}]
= 0. (9)

Equating the coefficients of
9Jj(a.

nl
&quot;)

to zero in this expression gives

[(a^|Fia-0-ft
3l

]{^
r
iO^}

= 0. (rl,...,^) (10)

This is for each value din and I a set of d^ equations* for the {a
Mjr

|0
J
}. They

are satisfied by taking

jSj Ha^FIa*); {a^ |0^-8(Z,r). (11)

This makes
(12)

For a given n, if all the (a
nl

\ V\ &amp;lt;x^)
are different, this is to within a phase the

only non-vanishing set of solutions of (10) which satisfies the condition (Sa).

Equating to zero the coefficient of 0(oc**
r

) for n&quot; ^n in (9) now shows us

(13)

The third ec[uation (6c) becomes, when expanded in terms of the 0(a
n

&quot;

),

S ^(a^ *)[(^&quot;
-^ ){&quot;*

r
12^- j8 {r|i^_ jgjfi{nr lorti

n&quot;l&quot;

&quot;

+S
(a&quot;

r
| F|a

nT
){a

wT
| 1^}]

= 0. (U)
ril

* These equations have the above simple form because of the way we have chosen our
t//(oL

nl
).

If we had used an arbitrary system of ^(a
n

) s, we would have obtained at this point a set of equa
tions determining the ^r(a

nZ
) as we have chosen them. This would lead to a further complication of

notation which it seems desirable to avoid.
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Equating the coefficient of
ifj(a.

nl
) to zero gives

-
jSjf {&amp;lt;x^| 1&quot;*}

-
J8* +S (a*] F| a 0{a

nT
| 1^} = 0,

n l

n 3=n (fyfill V\ rt n- l \lftril \ V\nnl\
from which fflS (g J (V ). (15)

rc/j a a

Equating the coefficient of i/f(a
nr

) (Z&quot; ^ Z) to zero gives

We have now determined ^{/J^} completely except for the coefficient

{a
nZ

|

l
nZ

},
which is not determined by equations (6). Equations (5) and hence

(6) determine aset oforthogonal states, but do not take care ofnormalization.

This means that equations (8) will be automatically satisfied for n l ^nl

(orthogonality condition), but these equations for n l nl must be expressly

considered to secure normalization. (8a) has been satisfied by the choice (11).

(8b) tells us that &amp;lt;

\ni\ynii _j_
/anf i \m\ ._

Q^

or that the real part of (a
n
*|

l
7

^} is zero. We may choose the imaginary part of

{&amp;lt;x

w/
|l
n

} arbitrarily. This is connected with the arbitrariness in phase of

j/r(j8

nz
). e^&amp;lt;

)

&amp;lt;/r(j3

n
O is a solution of the same phase for = as ifj(p

nl
) if/(0)

= 0.

But if 0( j8
7t/

) is given by (4), we have, iff(e)
= k^ 4- A2

c2+ . . . ,

This shows that ^ contains an arbitrary imaginary multiple of
\JjQ [i.e. of

&amp;lt;/r(a

n
O] which occasions the arbitrariness of

{&amp;lt;z

nl
\l

nl
}.

The most convenient

procedure is to set ranzi pzi_ Q^
n

7)

since we may obtain any solution from such a particular one by multiplica

tion with a phase factor. With this choice we see that the arbitrariness in

?/r2 is reduced to an imaginary multiple of
t/r ,

which we shall also set equal to

zero, and so on for the higher approximations.

Finally, setting the coefficient of
/f(&amp;lt;x

n &quot;r
) equal to zero for n&quot;^n in (14)

gives us the value of {a
w *r

|2
n/

}.
This procedure may be continued as long as

one pleases, and it is clear that recursion formulas may be obtained express

ing each approximation in terms of the previous one. The value of
{x.

n &quot;r
\2

nl
}

is obtained as above. The coefficient of ^(oc^) in the expansion of the fourth

equation (6d) gives $ . The coefficient of ^(a
rtr

) gives {a
nr

|2^}. The normal

ization relation (8c) for n l ^nl determines the real part of {a
71

^^}, the

imaginary part being arbitrarily set zero, and so on. See the next section for

a collection of formulas.
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If the (a
n?
|F|a^) for a given n are not all distinct, (13) is no longer the

correct solution. Such a problem should he handled by writing three indices

on the states ^(ot^ )&amp;gt;

where (a^|F a7*
) is independent of j. If we are to

choose the set of states for a given n and I with significance, we do it so that

the expression
n
g* (*** I

F
l

^Tf)(^Tf I
V

\

an/r)

(18)

nr? a*-a

which is written down from (15), vanishes unless
j&quot; =j

ff

. In this case we shall

find that we have # {W= #(***) and that^ will be given by (18) for

j*=j. The formulas for the coefficients in ^/M) will now be much more

complicated than before. If (18) for j=*f still has a degeneracy, we should

have to use four indices, and so on.

9. R6sume oi the perturbation theory.

We know the characteristic functions and values for an observable a and

are interested in those of an observable

/3
= oc+ 7. (1)

Denote the distinct eigenvalues of a by a1, a2
* ... and let oc

n be dn-fold

degenerate. Choose the dn eigenstates 0(oc*0 (Z
= 1, 2, ..., dn )

in such a way
that (a^lFjoc

71*

)
vanishes unless Z= Z .* The following applies only to n s

such that the dn values of (oc^l V\&
nl

)
are all different. Write

+ ...; (2)

{*
n lf\^+ ^^ (3)

jtT

Then

I= 2 (a
nT

= 2 (a^lFla^Oia^ Idc-l)
111}- S

* One can determine this set of states by diagonalizing that part of the matrix of F which refers

to any set of dn orthogonal states belonging to a&quot;.
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{a
nl

|l
nz
}=0

10. Remarks on the perturbation theory.

It may not at first sight seem clear why we have set down these com
plicated formulas for the perturbation of a degenerate system when we
might by a simple device have reduced the degenerate system to one which
is non-degenerate. If we add to the matrix of oc the diagonal elements

(a^leFja
7

^) of the perturbation matrix, we have a diagonal matrix of which
we know the characteristic values and functions and which is non-degenerate

by hypothesis. The rest of the matrix of eV may now be considered as the

perturbation; and the much simplified formulas to which those of 92 reduce
when the system is non-degenerate are applicable. But our perturbation

theory is expected to converge rapidly only for small perturbations a small

perturbation being one which causes shifts in the eigenvalues small compared
to the original distance between eigenvalues.* Now if we take as the un

perturbed levels those for which the degeneracy is removed by the diagonal
* This statement is based on the following rough considerations. Let us represent by T

7 a
number of the order of magnitude of an element of the perturbation matrix V, and let us suppose
that the difference between two diagonal elements of the type (oc

m
|
P
r

|oc
nl

)
and

(&amp;lt;x

w*

| F|a
nl

) (i.e. a
difference j3f -j8? such as occurs in the denominators of 924 and 9 2

5) is also of order V. Let a.nn
f

be a number of the order of magnitude of the difference &amp;lt;x

n - an between two adjacent degenerate
levels of a. Then the /c

th term in 922 is of the order of magnitude

while the K^ term in (a
n/I

|)8

nr
)
is of the order of magnitude

Since the displacements caused by the perturbation are of the order of eF and the original distance

3-2
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elements of the perturbation, we have no reason to suppose that the non-

diagonal elements will have an effect small compared to the effect of the

diagonal elements, i.e. small compared to the distance between unperturbed

levels. Hence if we wish rapid convergence we shall probably need to

consider the set of states going with an unperturbed level as a unit and the

perturbation as a whole, as we have done in the last sections.* It should

be remarked that if we do use the device suggested above we obtain for

the coefficient of e2 in p
71*

***
~r&amp;gt; \ / -n]\ T/l 7&amp;gt;7\ ~&amp;gt;n / -w 7 l *I7\ nfl \ * \ /

which contains in the denominator the distance between the first-order

eigenvalues instead of that between the zero-order eigenvalues. For calcula

tions just to the second order this formula will at times be convenient, and

is probably as accurate as the former.

To obtain a slight acquaintance with the perturbation theory, let us

consider in detail a simple finite case for which we can obtain an exact

solution. Let us take the matrices of a and F to be

(5)

[where we have already chosen the states ^(a
11

) and t/r(oc
12

) in such a way that

(0c
n

(F|oc
12
)=:0] and consider the characteristic values and states of the

observable = a 4- eF. From the formulas 924 and 925 we find that to terms
in e4 no _

90e2 -180e3 -3690 4
,

between levels is of the order awn &amp;lt; we see that we cannot expect the theory to converge rapidly
unless these displacements are small compared to this distance.

If the differences p? -jgj* are of smaller order of magnitude than F, (1) and (2) are too small.
In particular the magnitude of the elements {a

m
(*
m

} connecting two states which originally
belonged to the same unperturbed level is strongly affected. The above criterion is good provided
the differences in first order shifts are of the same size as the shifts themselves. If this is not true,
one might take as a guide the requirement that an expression of the type

should be small compared to unity for rapid convergence.
The question of the convergence of the perturbation theory has been considered by WILSON

Proc. Roy. Soc. A122, 589; A124, 176 (1929). He shows that for finite matrices the theory con
verges for all values of the parameter e. For infinite matrices no such definite results were ob
tained. [This means that (1) and (2) can be correct only for small *.]* In fact, if two or more unperturbed levels lie very close, it is advisable to consider them as one
degenerate level in the perturbation scheme, adding the differences to the diagonal elements of
the perturbation.
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while to terms in e
3

- 5 2 + o-5 3
}

-3* +45 c
3
}

- + 5 2 + U-75e3
},

3e- 6 *- 190-5 3
}

2 - 558 3
} (7)

2 4-1108-5

- 575-5

The eigenvalues (6) are plotted in Fig. I 2 for values of e from 0- 1 to 4-0-1

to terms of the 0, 1, 2, 3, and 4th order in e. The curves marked oo give the

values obtained by a direct diagonalization of the matrix oc + cF.* Fig. 2a

shows the coefficients in the corresponding states to 1, 2, and 3a order and

as given by the exact calculation.

The situation is as follows. In the zero*11
approximation there is a doubly

degenerate level at 10, and one state at 0. To the first order the level at 10

splits into 2 states of eigenvalues 10 and 10-h5. In the second order these

states are repelled by that at with strengths 90e2 and lOe2, which soon

results in a crossing of the two states for e &amp;gt; 0. A crossing of the true levels

will be shown in II 2 to be impossible. The third and fourth approximations

include the third and fourth terms in the power-series expansion of the true

eigenvalues (marked oo). The second-order perturbation theory for this case

has little accuracyfor a displacementof overone percent. The crossing of the

levels in this approximation contributes somewhat to this inaccuracy, the

values for e&amp;lt; being better than those for &amp;gt; 0. The fact that the second

approximation for e &amp;lt; is better than the third or fourth must be regarded

as accidental. The eigenfunctions $(p
u

) and &amp;lt;A(

12
), which for &amp;lt; are over

92 per cent, i^(a
u

)
and ^(a

12
), rapidly change character for

&amp;lt;-&amp;gt;0, ^(/J
11

)

becoming, at = 0-1, 70 per cent. */r(oc
12

),
and vice versa. The approximation

to these functions is seen to be no better for c &amp;lt; than for e &amp;gt; 0.

11. Perturbation caused by a single state.|

It is seen that in general the second-order perturbation theory may be

interpreted as a repulsion between each pair of levels resulting from the

first-order theory, of magnitude equal to the absolute square of the matrix

element joining these two levels divided by the unperturbed distance

between the levels, or in the form 1024, divided by the first-order distance

between the levels. It is of interest to see what one can say rigorously about

this repulsive* effect of perturbations.

* Where two curves are not separated inFigs . 1 2and22, their ordinates differatmost by 0*0 1 unit.

t BEILLOTJIK, Joux. de Physique, 3, 379 (1932); MACDONALD, Phys. Bev. 43, 830 (1933).
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._ I i I

-.A0 \08 -M :C4 -.02 M .04 .06 09 .10
-

Fig. I2 . Successive approximations to the eigenvalues ofa+ V of (5) as functions of c.
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X&quot; / -0.6 L

Fig. 22 . Transformation coefficients in several approximations for the eigenstates of

a 4- eF of (5) as functions of c.
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Suppose that we have diagonalized that portion of a matrix referring to

a certain set ^(J.
1
), $(A

2
), ..., $(A

n
)
of states, obtaining eigenvalues

A1
, A*, ..., An

, and that we wish to know the effect on this set of levels of

the inclusion ofanother state *I*(X) in our diagonalization. That is, what can

we say in general about the eigenvalues of the matrix

A 1
... aj

A* ... 02

... An
&amp;lt;zn

(1)

where we let (A*\ \X) = o^ ; (X\ \X) =X ? We shall suppose all the oc s to

be different from zero, since a state with a=0 may be removed from the

matrix entirely.

If the state going with the eigenvalue A of this matrix be

we have, from (1), the equations (of. 72
2),

0, (j=l,2,...,n) (2a)

0. (2b)
=l

Substituting the values of (4*[X) from (2a) in (2b) gives the equation in A,

which is equivalent to the secular equation obtained by setting the deter

minant of (2) equal to zero. The roots of this equation give the allowed

values of A.

The left side of (3), which is seen to become infinite at X =Ai
)
is such a

function of A as shown by the heavy curves of Fig. 32 for the special case

noted. The individual summands which are added to give this curve are

indicated by the light rectangular hyperbolas. With these same values of
the A a and cc s, the value ofX may be chosen at will. With the particular
choiceX=X = 13, the right side of (3) is represented, as a function of A, by
the leftmost straight line of unit slope. The abscissas of the encircled points
of intersection of this line with the heavy curve give the five allowed values
of A. The allowed values for two other positions of the perturbing level

X are also shown: one for a position X=Z(2)= 23 within the group of levels

Ai
9 and one for a position X= JT(3)=36 above the whole group ofA s.

It is clear from this picture that the (n-f 1) proper values ofthe matrix (1)

He, ifwe assume thatA1
&amp;lt; A* &amp;lt; . .. &amp;lt;An

, one below A\ one between A1 and
A\ one between A* and A*, ..., one betweenAn~l and^n

, and one above An
.
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This is independent of the value of X and of the a s, provided none of the

a s vanish.*

It is interesting to speak of this in the following way. The perturbation

between a level X and a set of levels A\ ..., An which He entirely above it

pushes each level of the set up, but not above the, original position of the next

higher level, whileX itself is correspondingly pushed down. The perturbation

between any level X and the set A\ ..., An
pushes up each level of the set

Fig. 32
. Graphical determination ofthe roots of (^l^In this example, A l= 15, ^. 2 == 20,

J.3= 25, -44= 35; [^1 = 5, |a2 |

=
three different values of X: X& =

1 = 5, I a, I = 5, 1 ou I
= 2, 1 a4 1 = 2. The roots are indicated for

^&amp;gt;=ii^
2
&amp;gt;=23,r

- -

which lies above X (but not above the original position of the next higher

level); pushes down each level of the set which lies below X (but not below

the original position of the next lower level); while X itself is pushed up or

down according to whether the sum

v l
a
*l

2

*r=2*
* If two of the A B are equal, say A*=AJ

, there is also a root at A*.
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calculatedfor those levels below X is greater or less than this sum calculated for

those levels above X. Hence with regard to the displacement ofX one may

say that the second-order perturbation theory gives the correct direction of

motion even when it does not give an accurate value of the amount.

There is, of course, no rigorous meaning to the correlation in the pre

ceding paragraph of the eigenvalues of (1) with the unperturbed levels

A\ A2
, ..., An

,
X. However, when all the perturbations

5
are small, the

states belonging to these eigenvalues will be very closely

The curves of Fig. 32 are seen to represent, after a fashion, the potential

along the A-axis ofthe plot dne to infinite lines of doublets perpendicular to

the paper at points A1
, A\ A*y and A^ of linear moment f lo^l

2
, fioc2 [

2
, f |oc3 |

2
,

and f |oc4|

2 in the direction of increasing A. One obtains an eigenvalue when

ever this potential equals A- X. The dipoles to the left ofan eigenvalue raise

the potential and hence tend to push the eigenvalue up while those to the

right lower the potential and tend to push the eigenvalue down.

At any given eigenvalue the relative amounts contributed to the potential

by the different strings of doublets are rather closely related to the relative

contributions of the corresponding states to the eigenstate in question.

These relative contributions to the eigenstate are shown by (2a)

(4)

to be proportional to the quantity
*

&amp;gt; instead of to the quantity
*&quot;

.

jQ/ _ ^ 1
ft

which measures the contribution to the potential.

One sees in Kg. I2 an illustration of the forces which keep an eigenvalue

from passing the next unperturbed level in the fact that /J
11 could not exceed

the first order value of/?
12

,
even though j8

tried very hard to push it past this

position.

It should be mentioned that equation (3) is often very easily solved

numerically for the values of A, especially for values which lie close to one of

the .4 s so that one term on the left side of the equation is very sensitive to

small changes in Awhereas the other terms are relatively insensitive. In this

way the roots j8
u and /?

12 of the problem in 102 were easily obtained to six

significant figures the root /? being then given by the diagonal sum rule.

In such a case as that of 102 the roots must be obtained very accurately to

give moderate accuracy in the transformation coefficients because of the

occurrence of A^ A in (4).
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12. The analysis of non-commuting vectors.

In quantum mechanics, the components of the vectors of physical in

terest position, momentum, and angular momentum become linear

operators in place of pure numbers. The manipulation of such non-

commuting vectors is facilitated by a set of formulas modified from those

of the usual vector analysis.

If A and B are two vector observables (A=sAai+Ayj+Azk, where

AX9 Ay , and Ag are scalar observables),* the commutators connecting the

components ofA and B transform like the components of a dyadic; hence

it is convenient to write

[A,B}= [Ax,BJii+[Ax,By]y + .... (1)

Two vectors mil be said to commute when this dyadic vanishes, i.e. when each

component ofone commutes with each component ofthe other. This dyadic

is not the dyadic AB BA, but is related to it as follows:

[A 9 Bl =AB-(BA) =AB-BA-(BxA)x% 9 (2)

where $ is the unit dyadic ii+jj+ kk and indicates the conjugate (trans

posed) dyadic.! Hence in general [B, A] * \A, B], but from (2) we see that

[B,^]=-[J,B]C . (3)

With these conventions, for a single particle having position vector r and

momentum vector
j&amp;gt;,

the set of commutators 52i may be written as

[r,r] = 0, [J&amp;gt;,]
= 0, [r,j&amp;gt;]=-tor]=& (4)

In a similar fashion, the commutators of a scalar observable X with the

components of a vector observable A form the vector

{X,A}~-{A y X]~[X,Ax}i+{X&amp;gt;Ay}j+[X,Az}k. (5)

(This is the vector XA AX.) A scalar will be said to commute with a vector

when this vector vanishes.

The following generalizations of 522 will be found very useful

[AB, C] = A-[B, C]- [C, J]-B, (6)

[^xB,C]=^x[BJ C]~([C,^]xJ8)c , (7a)

[C,A x B] = [C, A] x B- (A x [B, C\) , (7b)

[Z,JB]. (8)

* In this section we shall use light-faced letters for ordinary observables, reserving bold-faced

letters for vectors in the Gibbs sense.

f See GIBBS-WILSON, Vector Analysis, Chapter v, for a complete discussion of the ordinary

theory of dyadics. It shotdd be pointed out that in combining non-commutative vectors, the

order of the factors must be preserved; thus

, etc.
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With non-commuting vectors all associative and distributive properties

of ordinary vector analysis are preserved; other elementary operations must

be performed in accordance with the formulas

(9a)

]x , (9b)

where s and x indicate the scalar and vector obtained by inserting dots and

crosses respectively between the two vectors of each dyad in a dyadic the

scalar and vector of the dyadic as defined by Gibbs;

A*BxC=AxB-C, (10)

[B,A]-C (Ha)

4-[C,B], (lib)

(AxB)xC=BA-C-AB-C-[B,A]-C (12a)

=J-CB-JB-C-J-[C,B]. (12b)

The application of these formulas to the ordinary vector operator del

(V) has been discussed by Shortley and KimbalL*

* SHQRTLEY and KIMBAJLL, Proc. Nat. Acad. Sci. 20, 82 (1934).



CHAPTER III

ANGULAR MOMENTUM

Because of the symmetry of the atomic model, the dynamical variables

analogous to the components of angular momentum in classical dynamics

play a fundamental role in the theory of atomic spectra. The properties of

these observables, and of the electron spin, which we shall develop in this

chapter, have constant application throughout the theory of atomic spectra.

NOTE. In this chapter and henceforth we shall no longer distinguish by a difference in type face

between quantities of a symbolic nature and quantities in the Schrodinger representation. While

this explicit distinction has been found very useful in the exposition of the theory, because of the

complete symmetry which has been shown to exist between the two schemes no confusion will be

entailed by using the same type for each in what follows. In this way, bold-faced type is released

for its customary role, that of indicating a vector quantity in the restricted three-dimensional Gibbs

1. Definition of angular momentum.

In classical mechanics if the position vector of a particle relative to an

origin is r and its linear momentum is p, its angular momentum about

is defined to be L=rx p. (I)

We tentatively define the angular momentum of a particle in quantum

mechanics as a vector given by this same formula in terms of the position

and momentum vector observables.

From the basic commutation rules (12
2
4) we find that the vector L does

not commute with itself, i.e. that the three observables Lx ,
L

y)
Ls do not

commute with each other. Instead we find, from a double application of

1227, that

= r x [p 9 r] xp- (r x [p 9 r] x p) c

since twice the antisymmetric part of the dyadic r x (p x $) is (r x p) x g,

this becomes [,]=- (r x p) x 3 = -ML x & (2)

The question now arises: if we were to regard this commutation rule as

the definition of an angular-momentum vector, would this be equivalent

to the definition by means of (1) ? It turns out that (2) is more general than

(1), and that this is just the extra generality that is needed to fit electron

spin into the picture. So we shall suppose (1) to hold for a special kind of
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angular momentum which we shall call orbital angular momentum. The

general angular momentum defined by

E

or in terms of components by

wiU be denoted hereafter byJ3
while the letter I will be reserved for orbital

angular momentum.

2. Allowed values of angular momentum.

We proceed now to investigate the properties of the observables Jx , Jyy

Jz , which are consequences of 133. The squared resultant angularmomentum

J2= J|+ J2 + J2 (1)

is readily shown by application of 1226 to commute with the vector/ and

hence with all three components Jx,Jy ,
and Jz . As a consequence there exist

simultaneous eigenstates for J2 and any one component, say Jz . We can

find the allowed valuesJ2 and Jz by the following procedure. Let $(yJ* J
z )

be an eigenstate of/
2

,
Jz and a set* F ofobservables which make up together

with J2 and J, a complete set of independent commuting observables for

the system in question. We shall require that F commute not only with Jz

andJ2
, but also with Jx and Jy , for a reason to be given presently. Then

From these relations it follows that

___

Since Jx and Jy
are real observables, we see from this that

\
J
g \
^V/2/

,
since

the allowed values of (J^+Jy) and of JT
2 are essentially positive (cf. 42

,

Problem 3). Now } using the commutation rules 133, we find that

Jz (Jx iJy)
= (Jx iJy) (Jz ). (4)

Operating with the two sides of this equation on ^(y J&quot;

2/ J f

z) gives

W* ijy) ^(r/
2/W =

(
j
; *) (

J* ij
y) *(rJ* JJ- (

5
)

But this equation is ofthe form ofthe allowed-values equation and asserts

that unless
(^ itg^jv j/ } (6)

vanishes, it is an eigenstate of Jz belonging to the eigenvalue Jz ft. It is

also an eigenstate of/
2
belonging to the eigenvalueJ2 and of T belonging to

the eigenvalues y sinceJF
2 and F commute with Jx and Jy . (This is the reason

* In Cliapter n ve used capital Greek letters to denote complete sets of commuting observables ;

heresffcer w shall use these letters to fill out complete sets our individual observables will in

variably be Eomaa letters of special significance. For convenience we shall denote a set of eigen
values of r by y or y in place of the previous I&quot; or F*.



23 ALLOWED VALUES OP ANGULAR MOMENTUM 47

for the requirement that F commute with Jx and Jr )
Hence starting with a

given pair of allowed simultaneous eigenvalues J2
,
J
z , we in general find a

whole series of allowed simultaneous eigenvalues

...; J2
, /;-; J2

, J.; Jz ,Js +n; .... (7)

But we have already seen that the values of J
z
which may occur in simul

taneous eigenstates with Jz are bounded. Hence this series must have a

lowest member JF
2

, J\ , and a highest member JF
2

, J\ . From (6) we see that

the corresponding states must satisfy the relations

for otherwise the left sides ofthese equations would be eigenstates belonging

to J\ ft and J\ -f fi, contrary to hypothesis. Operation by (
Jx+ iJv )

on the

first of these equations leads to

= IT - (J*? +%J% &amp;lt;A(r/

2
Jl)

- o ;

from which, since ifr(yj
2 JQ

Z )
* by hypothesis,

J2 -(Jo)2+ jo= . (8a )

Similarly, operation by (Jx iJy ) on the second equation gives

J3 -(Ji)2-%Ji= . (8b)

From these equations (8) we find that

since J\ ^ J\ by hypothesis, this shows that J\ = J\ . Now the difference

Jl~-Jz
must be a positive integer, or zero, times H. This integer we shall, in

accord with the traditional notation, write as 2j, where j is restricted to the

values 0, , 1, f, 2, .... Hence

^=-J, &amp;lt;^=^&amp;gt; ()
and from (8) j2 &amp;gt; =j (j + 1) #*. (10)

This restricts the allowed values ofy2 to the numbers j (j -f 1) S
2

. With any
one of these values the set of allowed values of /,,. forming simultaneous

eigenstates is determined by (9) as

JK, (j-l)H, 0&quot;&quot;2), ..., -JK.

For these allowed values of Jz we shall use the notation mfi, where m3
- takes

on the values j, j 1, ..., j. For convenience we shall often omit the

subscript^, writing j; = m#. (m=j, j- 1, ..., ~j) (11)

Since J^., Jy ,
and J enter the commutation rules symmetrically, the

allowed values of Jx and Jy are the same as those of Jz . This completes the

solution of the allowed-values problem.
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3. The matrices of angular momentum.

Further development ofthe method used in the preceding section enables

us to find the matrix components of Jx and Jy in the representation in which

J* and Jz are diagonal. It will he convenient to denote the value ofJ2
by

giving the value ofj and ofJz by giving m. The first step is the normalization

of the ^r s occurring in 235. That equation tells us that

$(yjml)~N (Jx iJy)$(rJm), (1)

where N is the factor necessary to normalize $(yjml) when $(yjm) is

normalized in the sense of 1 2 1. Since (Jx iJ^f = (Jx + iJy], we find, using

1 22, that

iJy) $(yj m)N (Jx iJy) $(yj m)

y ] (Jx i

=N N K*[j(j+l)-m(ml)].

If this is to equal unity, we must have, in (1),

gi5N = -
, (2)

where 8 is an arbitrary real number. This is the arbitrary phase which occurs

in any $ because two states are not distinct unless they are linearly in

dependent, Such an indeterminacy ofphase can have no effect on any ofthe

results of physical significance. For this reason it is permissible for con

venience to make an explicit choice of phase. We shall, therefore, mean by
that set of states connected by the relation

m) (j m + l)$(yjm I), (3)

which is obtained from (1) and (2) by setting 8= 0.

We may now immediately obtain the matrix components of Jx and Jy .

The general element of the matrix of J
x&amp;gt;

is seen from (3) to be zero unless y= y ,j =j, m ~m 1. The non-

vanishing elements have the values

Similarly, the non-vanishing components of Jy are found to have the values

(yjm+l\Jy\yjm)= -%ift/(j-m)(j+m+l)
(o)m + 1).
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.if

The relation (yjm\Jy\yjm
f

) e~* (yjm \

Jx \yjm r

) (6)

connecting the components of Jy with those of Jx will be found useful.

Formulas (4) and (5) may by the use of vector notation* be combined into

the one formula __
(yjm l\J\yjm) = (i + ij) %fiV(j + m) (jm + 1). (7)

y here represents the eigenvalues of a set of observables which commute

with
J&quot;.

Let us consider in the yjm scheme the matrix ofsuch an observable,

say jK&quot;,
which commutes with J. This matrix will of course be diagonal with

respect to j and m, but by the following argument we can show it to be

entirely independent of m. We write

K$(y jm)^ijj(yjm) (yjm\K\y jm).
7

Now, from (3)

j^
y

Similarly

K (Jx iJy )

m)(jm+l)(yjml\K\y jml).
y

These two expressions are equal by assumption; on comparing coefficients

we have the result

(yjm\K\y jm) = (yjml\K\y
f

jml) (|X,J] = 0) (8)

for all values ofm such that the coefficient (j + m) (j m+ 1 ) does not vanish.

This theorem is of importance in cases where the Hamiltonian commutes

with various angular momenta (see I 7 ).

We may at this point show, in a similar fashion, that the unitary trans

formation between two schemes of eigenstates belonging to jm is entirely

independent of m. Let

&amp;lt;/f(o? m) =S xG8? m) (pjm\ajm). (9)
/?

We need not here sum overj
7 and m in x because %(/J/ in

)
is orthogonal to

iff(ajm) unless j
1 =

j, m = m. Then

l|ajm-l). (10)

But from (3) we have

-l) = (Jx
- iJy

using the expansion (9). On comparing this with (10), we see that

l). (11)
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Hence this transformation is entirely independent of m. For this reason, in

writing the transformation coefficients joining two such systems of states we
shall ordinarily omit the m^ writing merely (jSjjoy).

PROBLEMS

1. Show that ifj= | the matrix representing the component of angular momentum in the direc

tion specified by direction cosines ?, m, n is

n l^im
, .

l+im -n

where the rows and columns are labelled by (j=J, w=J) and 0*=J, m -
J).

2. Prove by direct application of the allowed-values equation { 72
) that the allowed values of

this matrix are + Jft.

3. Find the eigen-i/r s for the states in which J = J and the component of angular momentum
along the direction (I, m, n} has the values J&. How does the eigen-^r for the value + Jft in the

direction (?, TW n) compare with that for - J# in the direction (
-

Z,
- m, -n)?

4. Write out the matrices for Jx , Jy , Jz when j = 1 and verify that JxJy - JvJx =iKJz .

5. Find the matrix for Jx+J^ and verify that its allowed values are those of JT
2
-Jf; i.e.

4. Orbital angular momentum.

Let us now consider orbital angular momentum in the Schrodinger repre

sentation and learn some of the properties of the ^r functions which will be

useful in later work. Introducing spherical polar coordinates r, 6, 9, we
find that /

3 g
v

gL = #|#- 2/o-|= *fe~- (1)z
\ dy *dx} 89

v

The Schrodinger equation for this observable is

L
ji&amp;gt;&amp;gt; (

2 )

v\Y

which has the solution

z
VZTT

where A(&L
r

z) is independent of the coordinate 9. The Schrodinger wave
function must be a single-valued function of position, so Uz must be an

integral multiple of ft: T* * t ^ \ ,*\& r
L^mfi. (m^ an integer) (3)

We shall write $(*mt)
=

A(&amp;lt;x.
m

t) &amp;gt;(%), (4)

where
&amp;lt;J(mz)

= -~~ e&quot;^ (5)
VTT

is seen to be normalized in the sense

= S(mzX). (6)
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The requirement (3) rules out fractional values for tlae z component of

orbital angular momentum, and hence also excludes fractional values of the

quantum number Z, where
2 = Z(Z4-1)#

2
, (7)

since for a given value of I the associated values of m^ are Z, I 1, . . ., I.

Now let us find the dependence on 8 of the Schrodinger representative

^(yZwj) of a simultaneous eigenstate of F,
2 and L9 . In terms of polar

coordinates the operators for Lx and Ly are given by

as may readily be calculated by transformation from Cartesian coordinates.

We shall write ^ z m[} = (y lm^ &(l%)^^ (9)

where B(ylmt)
is independent of & and 9. Since m

t $ I, we have from 333

Since
&amp;lt;I&amp;gt;(Z)

is known from (5), this gives us the differential equation

30 (II)

rrom which 0(Z Z)
=

(
-

1) sinze.
( 10)

*

The coefficient of sin fl has here been chosen in such a way that Q(ll) be

normalized in the sense

J

The phase has been taken as ( I)
1 for convenience in later work.

Now having ^(yll)
= B(yll)Q(ll)^(l) 3 (11)

we may, by repeated applications of 333 and (8), find the *fj(y I mj) for all m
l

.

In particular, since (8) act only on the coordinates 8 and
&amp;lt;p

s
the factor

B(yll) will recur for each m
t

. Hence the factor B(ylmt)
of (9) does not

depend on ml
and we may finally write

^(yZm;)
= J%Z)0(Zm,)O(ro,). (12)

Since (10) has been normalized, these s will be normalized for any ml
.

@ s for the same Z but differentm
l
will not in general be orthogonal, since the

&amp;lt;J&amp;gt; s take care of this orthogonality. However, @ s of different I and the same

m
l
will be orthogonal since ^r(yZm^) is orthogonal to *fj(yl

r

mj) for l^l ,
and

insofar as a state ^ s belonging to Z and m
l
is concerned, the function B(y 1)

in (12) is quite arbitrary.

4-2
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Now to obtain these s explicitly. By repeated applications of 333

we find _ _
). (13)

From (8) we have

-i
(i2 t

from which, by iteration,

-*&amp;lt; a tL
y)*e^/W^

Usingthese relations andthe known form of 0(Z Z),we find the general formula

and in particular

The polynomial in cos# which follows the irrational factor is the Legendre

polynomial P
z(cos0), this particular expression for it being known as

Rodrigues formula.

We can also use (14) to find expressions for (lm) in terms of the deri

vatives of the Legendre polynomials, the result being

Hence 0(Zm) = (-l)
m
0(?-m). (18)

The natural choice of phases which we have made here leads to a rather

curious occurrence of the factor 1 only for positive odd values of m. Ifwe

had approached the problem through the usual form of the theory of

* For Z=Q, 1, 2, 3, the explicit forms of the @ s are

0(1 Q)=Vfcos0

9(2 0)=V|(2cos*0
- sin20) 0(2 1) = +V^cosflsinfl 0(2 2) =Vifflin2

0(3 0)=V|(2cos
3 - 3cos08inz0) 0(3 1)

= +Vfi(4cos
20sin0 -sin30) 0(3 2) =
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spherical harmonics the natural tendency would have been to choose the

normalizing factors with omission of the ( l)
m in these formulas.*

From the form of the operators (8) together with 333 we find the relations

-

Go

m cote 0(Z m) = - (20)Z m-f 1)
- jV(Z + m) (l-m + l) (l m- 1),

which are useful in some calculations. We quote here for reference three

other relations which may be obtained as special cases of results derived by
matrix methods in 93 :

(21)

Of great importance in subsequent calculations is the relation known as

the spherical-harmonic addition theorem, which expresses the Legendre

polynomials of the angle o&amp;gt; between the directions (9, 9) and (#&quot;, 9&quot;)
in terms

of spherical harmonics of (9, 9) and (0*, 9&quot;)-
The formula is

S (22)

where coso&amp;gt;
= cos&cos0

/ + sin0sin#
/

cos(9 9&quot;).

This relation may be derived as follows:

Q (l 0) &amp;lt;D (0),P,(coso&amp;gt;)
=

where 6 and 9 express the direction of r as referred to

a coordinate system with pole along k (see Pig. I3). r

Since this is an eigen-?/r of L2
belonging to I, it may be K

expanded in terms of the eigenfunctions referred to k
as pole:

(ZO)0 (0):= S

(231

co-0

(24) ~
&quot;

where the JS?Zm will of course depend parametrically on the angles 6&quot; and
9&quot;

which relate k to , j, A. Now ZyO ^O) ^)^, where Lz
, is the com

ponent of angular momentum in the direction k . But from vector analysis

* This question of phase choice has caused some confusion with regard to the relative phases of

the matrix components of angular momentum and of electrostatic interaction. See the discussion

by UITOBB and SHOETLEY, Phys. Rev. 42, 167 (1932).
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Hence, from (24),

+ 0(1 m-l)*(m-l) iV(Z+m)(Z-m+l) siR6&quot;&*&quot;Eim]
= 0.

Equating the coefficient of (lm)Q&amp;gt;(m) to zero gives the recurrence relation

= 0.

On comparing this with (20), we see that if we choose Eu to be

where /is arbitrary, then

J?te

Now in the special case 0&quot;
= 0, we see from (24) that !?,= !. Hence since

P,(l)
= 1,* (16) shows that/(0, 9&quot;)

=J-^-^
. We have then

P,(eoso,)
=5^= S0(Z m) *(m) &&quot;(lm) $&quot;(m) 0(0&quot;, 9 ), (

25
)

where ^(0,9*)
= !. But from Fig. I3 it is clear that Pj(coso&amp;gt;)

must be a sym

metric function of #9 and
&amp;lt;9&amp;gt;&quot;. Interchanging #9 and 0&quot;

9&quot;
in (25) gives

). (26)

But (25) and (26) are equal only if
g(9&quot; 9 9&quot;)

= g(6, 9) for aU pairs of directions.

This can be true only if g is constant and hence unity everywhere. This

proves the theorem (22).

PROBLEM
Show from (1) and (8) that

an expression which is essentially the angular part of the Laplace operator.

5. Spin angular momentum.

In 1925 Uhlenbeck and Goudsmitf discovered that great simplifications

could be made in the formal description of atomic spectra by assuming that

electrons possess an intrinsic angular momentum whose component in any

direction is restricted to the values %H. This is known as the hypothesis of

electron spin. An essential part of the hypothesis is that the electron also

possesses an intrinsic magnetic moment whose component is + e#/2ju,c in a

* This follows immediately upon expanding the Z
m derivative of (cos0

-
1)

1
(cos0+ 1}

1 in Rodri-

gues formula by Leibnitz theorem for the differentiation of a product, and then setting cos0= 1.

f UELENTBECK and GOXTDSMIT, Naturwiss. 13, 953 (1925); Nature, 117, 264 (1926).
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direction in which the component of angular momentum is p. The

opposite signs are natural enough on the simple view that the magnetic

moment originates in the classical electrodynamic effect of a rotating

negative charge distribution. However, the ratio of magnetic moment to

angular momentum (the magneto-mechanical ratio) has twice the value

which is given by the classical theory and holds for the orbital motion of the

electron.

Pauli* has shown that a quantum-mechanical description of the spin that

is adequate for most purposes can be obtained by treating the spin as an

angular-momentum observable of the type considered in 23 and 33 ,
but

withj restricted to the value |. Further developments by Diracf have shown

the spin to be intimately associated with relativistic effects, but we shall

usually treat spin in the simpler way introduced by Pauli.

We postulate then for the electron a spin angular momentum S, in

dependent of the orbital angular momentum L. The proper values of the

z component, Ss ,
of the spin are restricted to p; hence S2 has always the

proper value | (| + 1) &
2

. Ifwe write the proper value of S2 as s (# -h 1) ft* and

the proper values of Sg as m/i, we always have

From 334 and 335 we find for the components of S the Pauli spin matrices

(1)

In vector notation these matrices* are given by

(oci,|S|a;)||
=

With the introduction ofthe spin, the set *, y, z is no longer a complete set

of observables for a single electron, but to these must be added a fourth

observable, say S,. (Any component of the spin angular momentum would

serve as well.) The Schrodinger &amp;gt;f&amp;gt;

then becomes the function (x y z S
t \

^

)

which we shall write as^ . Here we have introduced the letter or for SJfi

when used in the sense of a Schrodinger coordinate; it is convenient thus to

introduce a notation different from the previous ms for the special case of

* PAULI, Zeits. fiir Phys. 43, 601 (1927).

t DJGRAC, Quantum Mechanics, Chapter xn.
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Schrodinger expansions. The coordinate a is, of course, restricted to the

values |.

An eigenstate of Sg with quantum number m8 depends on the coordinate

a through the factor
8(&amp;lt;r,

m
s),

that is,

/ / \ / f \ f AM \ /O\W \GH7YISJ
==

*r;r7/z\^/ 0(0&quot;j ^s) \ )

The factors
8(&amp;lt;r, J) and 8(cr,

- f) form an orthonormal set of functions of a in

the sense that +
&quot;V 5\/ /m &quot;\ ^s/ -wi \ &(VYI yw V /^^

that this set is complete is obvious. We may then write any function
iff

as

and represent this by the matrix

rxyz if / A r \

I

The result of operation of S on $ is then given by the multiplication of (I
7

)

by (4 ).* When is expressed in this form, |$,^l
a
gives the probability

density for finding the electron at xyz with spin + \ ; l^^-^I
2 the probability

density at this point with spin \.

The direct product^ of two eigenfunctions now implies, in the Schro

dinger scheme, summation over a as well as integration over x, y, z:

[- S fXV2a$xyzadxdydz. (5)
&amp;lt;r=-!/

PROBLEM
From the results of Problem 3, 33

, write out in the form (4 ) the most general ifj
for which the

component of spin in the direction whose direction cosines are (I, m, n] has the value + Jft.

6. Yector addition of angular momenta.

Consider a system in which JL and J2 are two commuting angular-
momentum vectors. (Two vectors are said to commute when each com

ponent of one commutes with each component of the other, i.e. when the

dyadic [JF19 jy vanishes.) Then the states of the system can be represented
in terms of the scheme

^&amp;gt;(yji J2^i^2 ) (1)

in whichjx and mx are the quantum numbers labelling eigenstates ofJ| and

J-tel Jz and m2 eigenstates ofJ\ and Jto ; and y eigenstates of a set of observ-

ables F which commute with J and J2 . We wish now to investigate the

question of the addition
3

of these two vectors to obtain states character

ized by proper values of the sum and the z component of the sum. Ifwe can
* By the use of two

^r functions, which are to be correlated with our \jsxyzl an * -*
DARWIX [Proc. Roy. Soc. A116, 227 (1927)] discovered equations which are equivalent to those
obtained by use of PauB matrices; Darwin s formulation however does not bring out the physical
significance of the two functions.
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learn to add two vectors, we can add any number by repeating the process.

These considerations are offundamental importance for the theoryof atomic

spectra, for they give us the basis of the rigorous quantum-mechanical tran

scription of the older vector-coupling characterizations of the energy states

of atoms.

We introduce, then, the vector resultant

of our two angular momenta. The states
tf&amp;gt;

above are eigenstates of the

complete set F rs ya r rr l
?Ji&amp;gt;J25

e/
l3&amp;gt;

t/ 2z

of independent commuting observables. But the set

FJUIJ2,^
is seen to be also a set of independent commuting observables, and since it

contains as many observables as the above, it should also be complete. An

eigenstate of this set we shall denote by

Consider now the subspace characterized by the eigenvalues y, jl9 andj2 .

From 2311 we see that this subspace is (2^-f 1) (2J2+ 1) dimensional, corre

sponding to the number of ways of independently assigning ml and m.2 to

them s: m - A _i _T mlJlyJl *-&amp;gt;&amp;gt; JlJ

2=J2&amp;gt;J2-
l

&amp;gt;~i -JV

The question which immediately arises is the following: What are the

(2/x + 1) (2/2+ 1) values of j, m which characterize the s of this subspace?

The method of answering this query is apparent when we realize that not

only the quantum numbers y, jl} and J2 , ^u^ ^o the quantum number m,

are common to the two modes of representation. From the fact that

Jz
= Jlz+ J^ , it follows thatm=m +m2 . Now since/is an angular momen

tum satisfying the commutation rules 133, any j which occurs in this sub-

space must do so accompanied by the corresponding 2j + I values of m. The

largest m which occurs in a
cj&amp;gt;

is m =j +j2 ,
when m jl and w2

=j2
. Hence

the largest m occurring in a $ must be j^+Jz and therefore the largest j

occurring must also be jl +jz . There are two
&amp;lt;/&amp;gt;

s with m =j +j% 1, namely
m =jl ,

m2
=j2

- 1 and ml
=jt

-
1, ma

=J2 . Hence there must be two
i/r

s with

this value of m. One of these # s we know to be that going with^=j1 -f-j2 ;

the other must belong to a j =j +J2
- 1. In general there will be three

&amp;lt;/

s

belonging to 771=^+^2 2, corresponding to the three values of (m1} m2):

This means that we must have in addition to the values j=*j_

j^j^+jz-l also the value j=Ji+j2 -2. However, if either^ oxj2 were
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we should not have had all three of the states (3), and consequently would

have obtained no new value of j. In general, the least valuejl +j2 n ofj is

obtained when js-n= j8 , where je is the smaller of j^ and j2 . This gives

n= 2js ,
and the least value of j as {fa J2 \.

From this point on, the de

generacy ofeachm must be proper to account for the occurrence ofthe values

That with thesefa go the proper number (2^ -f 1)(2J2 + 1) of values ofm is

easily verified.

To summarize, if we have two commuting angular momenta whose

squared magnitudes are JiO*i+*)^
2 an(i J^O a + l)^

2
&quot;khen the squared

magnitude of the vector sum of the two angular momenta can take on the

valuesJ (j 4- 1
)

2
,
where the allowed values ofj are given by (4). These values

are just those given by the empirical rule used in discussing atomic spectra

by the vector-coupling method. One can represent the result pictorially by

thinking of vectors of lengths j\ and j2 added vectorially, starting with the

parallel case which gives the resultant (j^+J2) and taking all possible values

differing from this by integers down to \jl j2 \
for the antiparallel case.

Two angular momenta will commute only if they refer to quite indepen
dent particles, or to quite independent coordinates of the same particle

for example to two different electrons or to the spin and orbital motion of

the same electron. This means, in the last analysis, that we can split any
eigenfunction of the type (1) into a sum of the type

&amp;gt;t(pj2ma), (5)

where J^ operates only on^ , J2 only on &amp;lt; 2 .

7. The matrix of (Ji+J2)
2

.

It will be convenient for future reference to calculate the matrix elements

ofJP in the scheme

Ifwe write JT
2 in the form

(1)
it follows immediately from 232 and 333 that

1-lm (2)

The matrix components we seek are these coefficients of
&amp;lt;f&amp;gt; according to the

definition 2214. These components are seen to be diagonal with respect to
m=ml -fm2 , as required by the fact thatJ2 commutes with Jz .
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We shall need particularly the matrix ofL*S= S L, where a has the value

I (1 4- 1) ft
2

,
and S2 the value ^ (| + 1) %

2
. The components are seen to have the

values

}, (3)

where m=

8. Matrix of T in the j m scheme. Selection rule on j.

We shall return to the question ofthe transformation amplitudes forvector

addition in 143 . Before discussing that question it will be fruitful to in

vestigate by matrix methods the properties in thejm scheme, whereJ is any

angular momentum, of the matrix of a vector T which satisfies the com

mutation rule ^ T] = [T,J]= -rx& (1)

in the notation of 122
. We shall indicate this relation by saying that T

satisfies this commutation rule with respect to J. This means that the com

ponents of T have the following commutators with respect to the com

ponents of J:

(2)

[J2,Tz]=o [/.,rj=rtf [J.,Tv]=-ftTx .

From 1229 we find that

j-r=r-j. (3)

This commutation rule applies to a large class of vectors:

(a) Any angular momentum satisfies it with respect to itself (cf. 133).

(b) If Jr=Jr

i+j2 + ?
where each addend commutes with all the other

addends, each of the addends satisfies this commutation rule with respect

to JT.

(c) Both r and p satisfy this commutation rule with respect to X; this

follows from a simple calculation of [r xp, r] and [r x p, p] by means of

1227a.

(d) Hence if J=zLl
JrL2 +... + Sl+ S2+...&amp;gt;

the coordinate r and the

momentum p of any electron satisfy this commutation rule with respect

to /. (Lt
is the orbital moment of the ith electron, St the spin moment.)

(e) Any linear combination of vectors which satisfy this rule with respect

to J will also satisfy it.

(/) A calculation similar to that of I3 shows that the cross product ofany

two vectors (and hence of any number ofvectors) which satisfy this rule will

also satisfy it. Hence any vector formed by addition and cross multiplication

from vectors which satisfy this commutation rule will also satisfy it.
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Another important fact which follows immediately from 1226 is that the

scalar product of any two vectors* which satisfy this commutation rule with

respect toJ will commute with Jx ,
Jy ,

Jz , and hence with J* :

[/.zvrj-o, L/MV2YHO. (4)

This is independent of whether 1\ commutes with T2 or not.

We shallnow consider the problem of obtaining the matrices ofTx,Ty ,
T3

in a representationin whichJ 2
,
Js ,

and a setA ofobservables which commute
with JT are diagonal. We shall first obtain a selection rule on j, i.e. a condition

on/ j necessary for the non-vanishing of a matrix component connecting
the states j and /. This we may do by a method outlined by Dirac

(p. 158).

Using the relation 122
6, we find that

L/
2

, 7&amp;gt;7-L7, rj- [r,7]-7= -(/-rx 3- rx 3-7)

Prom tMs we have

[J
2

, [J
2
, rj]

= - 2s[y (j x r-
= -

2ifi{
-

ZifiJ x(JxT-ifiT)- iH(J
zT- TJ2

)}

using 122lla to expandJx (/x T&quot;).
But

2
, IP, T]]

=
Hence y4r_ 27^7^+ TJ*=2W(J*T+ TJZ

)
- 4&J(J T). (5)

Take the matrix component of this equation referring to the states a j m
and a /m , where/ ^j. Since7-rconunuteswith7 [by (4)], this component
will vanish for the last term in the equation. From the rest we obtain:

0&quot;+ 1)
2-

2j (j+ l)f (/ + 1) +j *
(j + 1)

2
] (cy m|TVfm )

The bracket on the left is

UU+ 1)-/ (/ + 1)]
2= (j-f? (j+f + I)

2
,

while 2
|j (j + 1) +/ 0&quot;

+ 1)1
=

C? +/ + 1)
2+ (j -j )

2- 1.

Hence

In order to obtain a non-vanishing matrix component one ofthe brackets
must vanish. The first cannot sincef =j and;&quot;, j Js 0. The second vanishes

only when j -j= 1. Hence for a non-vanishing matrix component we
must have ., . ..

/-.? = 0, 1.
(6)

* Aa important special instance of this is the square of such a vector.
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The only non-vanishing matrix elements of any component of a vector of the

type T in thej m scheme are those for which (6) is satisfied. This Is of course a

necessary, not a sufficient, condition for a non-vanishing component.

We may obtain a relation which will be useful later by taking a matrix

component of equation (5) diagonal in j, say that joining the states a j m
and a j m :

j(j+l)1P(*jm\T\v?jm )
= (KJm\J\KJm )(*j (7)

since JmT is diagonal with respect to j and m and since J is diagonal with

respect to a by hypothesis.

9. Dependence of the matrix of T on m.*

It will be convenient to consider, in place of Tx and Ty individually, the

observable^Tx-iTy since from the matrix of^ we can obtain those of

Tx and Ty by using the relations 2Tx~^ + 3?~ and ZiTy^^-f. These

relations obtain because Tx and Ty are assumed to be real observables.

For the matrix of 3&quot; we can very easily obtain a selection rule on m. We
have

\J.,^ = \J.&amp;gt;T9-iTA = \J. 9TA-^
Hence J93T- ^7,= -W .

Take the a J m; a / m matrix component:

^(xjm\r\*
r

3 m )-(*jm\r\* ?mW
or (m-m +l)(ajra|^|a /m )==0.

Then (ajm[ e9
r

&quot;]a

/

j
/m /

)
= unless w = m-f 1,

and (ajm| e^&quot;
t
|oc

//m/

)
= unless m =ml.

.ffewce &e only non-vanishing matrix component of Tx or Tv
are those for

which m =ml. (la)

Since Tz commutes with Jz ,
the only non-vanishing components of Tz are those

for which mf = m. ( lb)

We shall now obtain the dependence of the matrix of 3&quot; on m. If we

denote Jx iJy by /, we have

[/,^=fo-jy,rx-^
The matrix oi/ is known. From 333 the onlynon-vanishing components are

* The derivation of the selection rule on m is essentially as in DIBAC, p. 158. The method of the

rest of the section follows 29 of BORN and JOBDAN, Ekmentare Quantenmeehamk.

$ Although the rangej^m^ -j + 1 is necessarily all that leads to non-vanishing matrix com

ponents, it is important to note that this equation, as well as all the following, is true for the full

range j&zm^s -j. We shall later wish to take some sums over m and shall sum over this latter

range,
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Take the most general matrix component which satisfies the selection

rules of the equation

This is

\a! m+l)

j
r

m)(!j m\/\* j
r

m+l) (j -j= 0, 1,

or, from (2) 3

f-m). tf -j = 0, 1) (3)

If/ =j, we have

and since this holds for any value ofm we see from the form of the relation

that each ratio must be independent of m. We shall denote this ratio by
(y.j\T\a! j) 9 this quantity being independent of m. Hence we find, for the

dependence on m of the elements of 3&quot; diagonal in j:

(ocj m\ST |

a jm+ 1)
= (aji T:K j)V(j-m)(j+m + l). (4)

Ifj =ji } (3) becomes

= (ajm- 1
\
y

\

a j

Multiply through by V(J wi)/(J-f- wi) and rewrite as

\ OC /_!. CX /
~&quot;~

-1 jy -

Again each ratio is independent ofm and hence is set equal to (aj: T\a!j 1
)

.

Theii
j-l m+l) = (a^Tja j-l)^- w) tf-w- 1). (5)

Iff=j+-1, (3) becomes

Multiply by V(j+m+l)/(J-m-f 1) and rewrite:

(qjml^lay+lm+I) ^(aj m-l\r\* j+l_m) = _ ..^.^
.

V
f

(j+f+2)(j+m+l) V0*+m+l)(j+ m)
J?: &quot;^^

Hence

). (6)

We shallnow determine the dependence ofthe matrix of Tz on m.We have

that is, 27^
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Now the only non-vanishing matrix elements of /^ are

-j-fl)

Since we know the matrices of ^/
f and HT we can determine the matrix of

T directly from (7). We have from (Ib) the selection rule m = m.

Then

2% (&j

-
(aj: T:aL

f

j)

or (ajm|2
7

&amp;gt;

/

jm)=m(ocj:T
r

:oc
/

j). (8)

Also, since Tz is real, we see that (aj:T:a
/

jf)
= (a jir:at;),

=j 1, we have from (7):

or (ajm|I
T

2|a j-lm)==Vf--m
2
(aj:3

7
:a

/

j--l). (9)

/ =J+ 1 one obtains in an analogous way from (7)

(10)

Since 2^ is real we see by comparison of this with (9) that

Hence the matrix (ajjTja
7

/) as we have defined it is Hermitian. This fact

enables us at once to obtain the matrix ofJrt . For instance, from (5) we have

The other components of ff* are found in a similar way.

Collecting all our results, we have the following table of the non-vanishing

matrix components of T ,

*(*3\T\* 3+^^

(ajm| r|a jm 1)
= (aLJ\T\!j) %V(j +m)(jm+l) (i ij)

=
(v.j\T\u!j)mk

(ajmj T\a?j- 1m 1)
= (aj: T\*

r

j-1) $V(j + m)(j + m-l) (i ij)

m2 *. (11)



64 ANGULAB MOMENTUM 9*

From its definition, if TX9 Ty and Tz commute with. J2
,
the matrix

(ccjiTia /) is diagonal in j; if they commute withA it is diagonal in a. These

remarks hold in particular for J
x&amp;gt;

Jy and Ja9 for which

(aj:J:a /) = 8^8aa.,

so that in this case the formulas (11) agree with 337.

From the above formulas and from 3311, we see that in going from the

scheme ocjra to a scheme jSjra, the matrix
\\(*j\T\&amp;lt;x, j )\\

is transformed by

jj(aj|j3j)H, just like the matrix of an observable:

act

Here we have used the notation (A?|cy) s (j8jm|ajm) justified by the proof

in 33 that this element is independent of m. Hence we see that in every

respect IKccjjTjaj )!!
behaves like the matrix of a real observable.

10. The matrices of Jl
and JFa ,

where J +J2
=J.*

IfJ is the sum of two commuting angular momenta JI and JF2 ,
we can

obtain the complete matrices of J^ and J%. Consider the representation

7Ji J2 Jm &amp;gt;

where the observables T commute with/x ,J2 , J. (IfJ is the total

angular momentum ofan atom ;Jx
= S, its total spin momentum ; and/2

=

its total orbital momentum, some of the y s would naturally represent the

^s, Z
5
s and 5

5

s of the individual electrons.) Then the matrices ofJi and /2

will be diagonal in y,^ 3 andJ2 Since they will not depend on y, we shall not

carry the label y. For brevity we shall later drop also the labels jl and j2 .

9s! 1 gives us the dependence of these matrices on m; hence we need now

determine only the (j\ j2jlJ^ j2 j ) and (jxj2 j:J2:jx j2 /). For the case/ =j
these follow easily from 837 3 which becomes for the z component ofjt :

or, from 9s! 1

j(3 + l)&(M*3\Jti3iM) = (:Ji323^

But Jl= (J-

or JiJ

Using this relation, (1) gives

(2a)
and the corresponding element of J2 is obtained by in

terchanging subscripts 1 and 2.

* 10 and 11 follow GUTTOTGER and PAULI, Zeits. fur Pliya. 67, 743 (1931),
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The components not diagonal in j are more complicated. We use the

relation
[Jlx_;jlv ,JJ= -tft/lv-t(

or (J-ix-iJiv) J-iz-J-iz (^ix

Take tOnefajijm; 3iJz3 mJf ^- component of this equation, using 934 to 9310

(omitting the labels j ls j 2) :

-Jilj-lW-m* (3- l\Ji\})^(j

= * (31Jilft/(3 -m)(j

or OVJJ)*- 10 i
Jil

Now, from (2a)

Hence, with the abbreviation

^ SB!JiO\+ 1)-JaO*+ 1
)&amp;gt;

we obtain the relation

ioviu--i)m^ (
3)

We get another relation in a similar fashion by taking the jx j2 jm ; j J2 jm

component of the identity

Jl= ttJ

This becomes

or, from (2a), and with the abbreviation
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We can solve (3) and (4) for lOViL/-l)I
a and lOI/Jj-fl)}

2
. For the

former we obtain

NOW
hence

IffJ :
j - I &amp;gt;|

- &quot;

J
4 + (J*~^ 2+ (Ji +J2 + *)

2f - O l ~J2)
2 Oi

IU: 11; ;| -

Since |OViJj + *)i
2
=iO&quot;+ 1|Ay)|

8
tllis q.uantity may be obtained from (5)

by substitution ofj 4- i for J.

We have now arrived at the point where we should choose the relative

phases of the states of different j. This we do conveniently if we take

(fi.Jilj i) ^ be real and positive for all j. This means that the non-diagonal
elements ofJ^ are all real and positive. Since the matrix ofJ=J +J2 must
be diagonal with respect to j, we have (j\JJ 1)

= -
(j\Ji\j- 1). Hence if

the non-diagonal elements ofJ^ are all positive, those ofJ& are all negative.
An alternative choice of phase would reverse these signs and hence reverse
the roles ofJ^ and JF2 . We therefore write

~h) (

(2b)*
=

{ ? } ^Ae tsame ex-pression.

In the following pages we must be consistent in choosing everywhere either
the top or bottom sign wherever the symbols { } and { + } occur. We shall

carry both signs as a matter of convenience in the sections immediately
following. However, elsewhere we, shall always use (2b) with the upper sign.
In addingJ^ andJ2 we choose the relativephases ofstates ofdifferentj so that the

non-diagonal elements of J^ are positive, of J^ negative
* With the abbreviations P(j)=y ~-

}\ +j2) (j +jt +j2 + 1)

QU) =0\ +J2 -i) (i +
which ve shall use in the nert section, this formula becomes

(2V)

It is to be noted that P is a function only of andj +jt while Q is a function only ofjx and j -j, .
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At this point we may also conveniently make a definite choice of the

phases of the states
&amp;lt;/&amp;gt;(yJi J2 Jm) of 632 rotative to the states

&amp;lt;j&amp;gt;(yji3*
mimz)

of 6S1. These phases are completely specified by the above choice of relative

phases and the following specification for the state of largest j and m

(namelyj=m=fa +fa) :

11. Matrix of a vector P which commutes with jFla

We shall now consider the matrix of a vector P which commutes withJ ,

but which satisfies 83 1 with respect to J, where/=Ji H-J2 - Because of this

latter relation we see that P must satisfy 8s ! with respect to J2 also. The

dependence ofP on m is given by 93 1 1 ;
we shall proceed to find its depend

ence onj in the yfa fa jm scheme. (If/j.
= S, Pmay be eSr* , the total electric

moment, or may be Li9 the orbital momentum of the ith electron, or r$ or

pi9 the coordinate or momentum of the ith electron, etc.) The matrix of P
will necessarily be diagonal in fa, so for convenience we may omit the label

fa . We shall also omit for the moment the y ; / which will occur in all matrix

components of P (/,. and JT2 are necessarily diagonal in y). Because F
satisfies 831 with respect to J2 &amp;gt;

we have the selection rulej2 -fa= 1 or

zero.

Consider the yfafaj m] y AJa/ m+1 component of the equation

(Jto-iJ^P^Pttfte-MiJ- W
First forf=j- 1,/=J+ 1 (from 936 and 93

10):

(fJ^^^
or t-M) = (J*J-^ W
Since the matrix of J is known, this furnishes a recursion formula for

Now consider the case/ =j, j&quot; =j+l. Here we obtain

0*2jVi&J) Ot JiJl/2J+ 1
) 0*-)
a^

Since this relation is independent of m, the coefficients of m and of unity

must each vanish, i.e.

[-&jVitfi fl + Ofo&quot;+
I^iyi J + !)] (Jt Ji^Ji J + J )

5-2
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Subtraction of the second of these from the first gives

3\3\P\h3)
= 0. (3)

In the same way we obtain from (1) for the case j =j, j&quot;=j- 1 the two

equations

M&J- 1
) . j-il-PI/J-i)

- O^Vib;J-

Subtraction of the first of these from the second gives

[- (j.jV^JW+OU-il^ii^J- 1
) 0&quot;-

Ifwe can determine (jz j\P\j2 j+l) from (2), (3) will give us (hJ\P\jJ),

and (4), (j2 j\P\JzJ-l).

For the case j2 =jz , (2) gives us

We see that these ratios must be independent ofj, as implied by the notation

(M^lh)- Henee

where the last factor is given by 1032b.

From (3) we obtain, using (5),

-
l(JJ\Ji\hJ) (3 + 1)

- OW+ 1
! i& J+ !) + 2)] ii^U.) = U*flP\J*J)&amp;gt;

or, from 1032a

Similarly, from (4), or by taking the complex conjugate of (5), we have

&&P&J- 1
)
= ~ 0*P&) OljVilJiJ-l)- (7 )

For the case^2=^2 !
3 (
2
) becomes, on substitution from 1032b ,

- 1 (j, j;P=ja-lj
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THs gives us (j2 j\P\j^-lJ-H). Knowing this, (3) and (4) give us

?) are essentially the complex conjugates of these quan

tities.

Using for conciseness the abbreviations*

) (3 +Ji+h+ 1
) &amp;gt;

we find the following complete table of formulas for the dependence on j of

the matrix of a vector P which commutes withJls whereJ 4-JT2=/:

.

^ }

(8)

When we seek the corresponding components for a vector Q which com

mutes with/2 ,
since the only essential distinction between J^ andJz

is the

opposite choice of signs in 1032b, we find that the dependence onjofQ is

given by (8) with j^ andj% interchanged and the double signs inverted. Since JTa

is itself of the type P, and^ of the type Q, the formulas 1032 are special

cases of (8).

* We note tfcat P(j) and Q(j] are essentially positive quantities since Ijj.-fa

takes on negative values in certain instances.
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The question of obtaining further information about the factors

now arises. Since P satisfies the commutation rule 83 1 with respect to JF2 and

commutes with J^ ,
we can express directly from 93

i 1 the dependence onm2

of the matrix of P in the yJt j aml
m2 scheme. This matrix will of course be

diagonal in j^ and ml and by 338 the elements will be entirely independent
ofm

l
. Further, a vector having the properties ofP will usually, ifnot always,

be of such a character that when a resolution of the type 635 is made of the

states in question the vector wiH operate only on &amp;lt;

2 , not on^ . In this case

the matrix elements will be independent also of the value ofjx . This will be

true in all cases which we shall experience; hence we shall here treat these

elements as independent ofjl .

We shall
, for example^ have from the first formula of 9311:

. (9)

There occur here on the right the factors (yJiJjf.P\
&amp;lt;

y JiJ$)
= (yj&Ply fz) for

which in accordance with 931 1 we use exactly the same notation as we have

adopted for the factors occurring in (8). That these factors actually are equal
is shown very simply by a calculation of (yJiJ^^m^Pl^ j^j^m^m^) from
3li and of (yjj J2jmjPiy A j2 j m ) from 9311 and (8) for the case

3 =sm ^

in which we know from 1036 that these two matrix components are equal.

Knowing that thefactor (yJ2\P\y j*) of (8) Jim the same properties with respect
to the vector J2 as the (ajI-Tja

7

/) of 9311 has with, respect to J enables us to

repeat in many cases the considerations of 103 or II3 with respect to this

factor. In particular if/2
= P-fP ,

we can determine this factor completely

by the formulas 1032; or ifJ2
=J2 -fJ and P commutes with J^ formulas

of the type (8) are again applicable to determine the dependence of the

matrix ofP onJ2 , and the present discussion may be repeated. We shall find

many applications for such calculations.

12. Matrix of P-Q.*

It will be convenient at this point to obtain, in the yjifajm scheme, the

matrix of the scalar product of a vector P which commutes with J^ and a
vector Q which commutes withJ2 , both of which satisfy the commutation
rules 83 1 with respect to J. From 834 we see that this product P-Q will be

* JOHNSON, Phys. Bev. 38, 1635 (1931).
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diagonal with respect toj and m. The elements ofP*Q are easily shown from

9311 to be given by the expression

- S (yjij2 jwlPiy&quot;jj^^^
&quot;?m

A j. JI^I/Ji j; j+l) (/Ji/2 J+11CI//1/2 J) + 1) (*f + 8)

j2jjpj/ji j; j) (/ji j; jiQjy j; j; j) j o*+

+ S(yjlj2j:^y^ (1)

y
When the formulas 1138 giving the dependence on j are substituted here 3

we obtain

= iS CyJai-fVJ2) (y^iiCI/ Ji) U + 1) ~h Wi+ 1)
-
Js (A + 1)&amp;gt;

v*

js
-4- 1) 0&quot;

+
y&quot;

A- 1 ;Jm)

S (rs^lfh] (y*Ale!/A-_
!^!/J4-i) (y*Alfll/Ji-l)VOi +A ^* + 1) (A +ja +j) (h +5*

-
j) OWi -J -

1)

y*

(yjiA j \P*Q\yji+l A-i j m)_
= J2 (yA!P|y*A-i) (y*Ji!!yVi+i)Vc/+A -A -

1) O +A -jJ 0&amp;gt;A -A+ 1) +A -A +2).

.

(2)

The only other non-vanishing elements are those obtained by taking the

complex conjugates of the last four above. As in the previous formulas we

may interchange P and Qy j1 andj2 ifwe invert the double signs. (Compare
the second and third elements.)

13. Sum rules.

There are certain sums of scalar products and absolute squares of

matrix elements of T and P which will be of interest to us in connection

with intensities of spectral radiation.

From 93I1 we easily find (the calculation is similar to that used in

obtaining 123 1) that

2 (ajm|T|aT&amp;lt;&amp;gt;
*

(* ? m*\T\* j m )

m*
= $ 8mm- (ayiS

1

!* j&quot;) ( /!2Vj) S(j, j ), (i)

where

(2)
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In particular, then

mf

These sums are independent of the m value ofthe state ocjm occurring on

the left. They are not symmetric in j and /, but become symmetric if

multiplied by (2j + 1) to accomplish the summation over m.

It will be convenient to obtain now a relation which will in 74 be

interpreted as indicating that the total radiation from an atom is isotropic

and unpolarized. Using the relation

Sm
m j

we readily find from 9311 that

2
TO j 771

= S |(ajm|r|a /m-l)p= |(2j+ l)|(^jT:a /)|
2
S(j3 j ). (3)

m

For the case of the vector F of II3
,
we should like to go on and sum (1)

over the j values of the final state, obtaining the values of

(4)

l,J2, andJ2 1. The straightforward evaluation of these quan
tities by substitution from 1138 is algebraically very complicated. This

unfriendly complication may be avoided by a transformation to the

scheme as follows:

(4) = JT $mm, S S
^ ^
S (yJi J2 jm |y^ J2mima)

5* m&quot; ?nimtmJ mi T

(yVi rVJiJD (y A^ |P|y A

The sum over
fin&quot; may be performed at once to give a factor

(4)=S,Smm, 2

, * t
l. lootnote, p. 49.
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From the discussion at the end of 11s
, we know that the value of the last

sum is given by (1) as

The factor remaining is then

which is unity since the values of these transformation coefficients are

independent of y. Finally then, (4) becomes

and in particular

S Kw i J jl P Ir A J2 j m )|
2 =

|(y;,iP!y #)|
a
S(J.. ) (5 )

j m

Here/ is summed over the values j l
9 j and j-\- 1. These sums are inde

pendent not only of the m value, but of the j value of the state occurring on

the left.

14. Transformation amplitudes for vector addition.

To complete the discussion of the addition of two angular-momentum
vectors we need to know how to express the eigenstates (6

3
2)

in terms of the eigenstates (6
3
1)

As indicated, one does not needinthis discussion to write the yji jz explicitly,

since they do not occur as summation indices in the transformation. More

over, since (?%m2) is an eigenstate ofJs=Jlz+ J^ with eigenvalue m-^ 4-m2 9

it is orthogonal to any eigenstate of Jz with another eigenvalue, e.g. $(jm)
for m 7^m1 4-m2 . Hence, in the relation

ift(jm)
=

&amp;lt;/&amp;gt;(?%

m2 ) (n^rn^jm), (I)

the coefficients (m-Lm (̂jm) will contain a factor (?%+m2 , m).

One way to obtain a transformation between these two schemes is to

diagonalize the matrix obtained in 73 of
J&quot;

2 in the m^m^ scheme. This

method does not, however, give us a set of states $(j m) with the particular

phases we have agreed in 33 and 103 to use; hence none of the matrix

elements we have calculated would be valid in such a scheme. We can,

though, by using the formulas of 33 and 103
themselves, obtain a set of
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recursion formulas which completely determine the transformation coeffi

cients with the proper phases.

For the state $(Ji+hJi+Js) of highest j and m there is only one non-

vamsMng coefficient, namely (el 10S6)

Knowing the state $(jm), i.e. all the coefficients (m^m^jm) for the given

j and m, 333 gives us the state $(jm- 1). Expand 333 in the mim2 scheme:

SITI Jl fa

j
S 4

77ll77%2

Since /
a
.-iJ

ir*(Jlaf
-iJ

ly ) + (Jto-iJ2y),
we obtain from a ^application

of 333:

itf0

or, equating coefficients o

2 |j w)

-fV(j2 H-m2 -hl)(j2-m2 ) (w^ma+llJm)* (3)

This is the desired recursion relation.

From 9s and 10s we obtain the recursion formula which steps down the

value ofj. From 9all we find that

&quot; - m) (j -fm j (j-l|

This becomes, on expanding and equating coefficients of^(m^m^ as before.

V (j
- m) (J 4- m) (j- 1:JJj) (w^ma |j- 1 m) = ])%

-m O jJ^y )] (Wj.m2 |j m)

), (4)

where the (/i/jyl are given by I032. This relation gives us the state ^(j- 1 m)
when we know the states $(jm) and ^(j+1 w).

With the initial condition (2), the two recursion formulas (3) and (4)

determine completely all transformation coefficients for the addition of a

givenjj andjz . A general formula for the transformation coefficients is very
difficult to obtain from these relations. The general solution has however



143 TBANSFOKMATIOK AMPLITUDES FOB VECTOR ADDITION 75

been given by Wigner* by the use of group-theoretical methods as the

following expression:

(j+A +Ja + !
) ! Oi-

In this summation K takes on all integral values consistent with the factorial

notation, the factorial of a negative number being meaningless.
This formula is so complex that the calculation of coefficients by its use is

as tedious as the direct use of the recursion formulas. But by making tables

which show the result of adding any j\ to ^ = 0, |, 1, f , 2, ,.,, we obtain a

convenient way of evaluating these transformation coefficients. For the

trivial case j2= 0, we have

Oi m
i 1h J )

= S(J &amp;gt;Ji) (&amp;gt; %)&amp;gt;

i-e. 0(ji Ji wii)
=

&amp;lt;(A ah 0). (6)

In Tables I 3 to 43 are given the values forJ2 =f, i, f, and 2, which are

sufficient for most cases in atomic spectra: one seldom wishes to add two

angular momenta the lesser of which is greater than two.f

In the addition of two angular momenta ja and jb we shall wish to know
the effect of the reversal of the association ofja and jb with the^ and j2 of

the above formulas. If we associate ja with jI , jb with j2 ,
we obtain a state

$(jajb j m) as a certain linear combination of the states
&amp;lt;f&amp;gt;(ja jb

mamb ). When.

we associate jb with Jx , ja with J2 , we obtain a state $(jb ja jm) as a certain

linear combination of the states
&amp;lt;f&amp;gt;(jf)jambma) f ^e Assume the basic states

#0ahmamb) and $(jb jambma ) to be identical (cf. 635) . The states $(jajb j m)
and $(jb jaj m) must be essentially equal; but that they will have different

phases is seen from the fact that for the ^(JaJbJ^) ^e non-diagonal
elements of the matrix of J^ will be positive while for the ^(JbJaJ^
these elements will be negative (cf. 103). Hence, for successive values ofj,

these states must change their relative phase However, for j^ja+jb the

two states are equal since for m~ja+jb they both equal &amp;lt;j&amp;gt;(ja jbjajb)&amp;gt;

* WIGNEE, Gmppentheorie, p. 206.

t These tables may be calculated from the recursion formulas alone or from (5) alone. Formulas

(2) and (3) determine immediately tlte element m the upper left corner. Repeated application of

(3) gives then the top row; from this (4) determines directly the other rows. The bottom row is

obtained very simply from (5), the summation in which reduces to one term for this case. For the

top row, however, this sum becomes very complicated. The most convenient method of com
putation combines the use of (5) and of the recursion formulas, especially of (4) for the passage
from one row to the next.
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TABLE I3 . O i i wx rn^ji %j m)

14s

TABLE 23 .

V (2jl + l)(2j1 + 2)

v;

V X

2^ r2f2^(2^

y&amp;lt;

]

5712=
- 1

v (

/
;

__! ^

V V^i

TABLES3
.

Jl-i

v/
&amp;lt;:

\ + TO - i)(Ji + TO + iXJl+

/3(Jl + MI - ^)(J\ TOT + |)(Jj

V 2.7! (2^ + 1X2^ + 3

-W 4- f }

y:

v; yi-ffl-*X./i-+*Xji--+f)
2/i(2Ji-lX2A + l)

+ 3)

/3Q&quot;i+W&quot;iv %
+m -

1)(A -m -
*)0*i

-w + 1)

7712=
- -f

Jl+t
/3(Jj+m +f)(/i OT + )(A -m +f) i

-m +f)

Jl-i -0\-3*-i y! +fX/i -W -

(2^-1X2^+1X2^

Jl-f -v 5^^ v/^ 2^(2^-1X2^

* From Wismer. t Calculated bv F. Seitz.



143 TRANSFORMATION AMPLITUDES FOE VECTOR ADDITION 77

c5



78 AKGTTLAB MOMENTUM M3

the states for other values of m are given directly in terms of this by 333.

Hence the states in question must satisfy the relation*

a )b 3 m) (?)

PROBLEM

Investigate the relation of the preceding formulas to the classical vector-coupling picture.

(a) Show that if the spin of the electron is known to have the value + in a direction making the

angle 6 with the 2 axis, the probability that the z component of spin nave the value +J is cos2(0/2)
and that it have the value -

J is sin*(0/2). [PAUU, Zeits. fur Phys. 43, 601 (1927).]

(6) According to the vector-coupling picture when/ =Z + the spin is parallel to I as a vector
and when j has the component m the angle it makes with the z axis is cosd~m/(Z + }). Compute
eos2

(#/2) and sin2($/2) for this angle and compare with the square of the coefficients in the first row
of Table P.

For the case j =1 - J one has still to use coa9=m/(l + }) instead of m/(l
-

J) as suggested by the
vector-coupling picture. This is an example of the difference between quantum-mechanical
formulas and those given by classical methods, although, consistently with the correspondence
principle ( 44), the two agree for large values of I.

* This agrees with the relation

O o J6 ma b\3a Jb j ) =( -
l)

y +^0 6 ja

given by Wigner.



CHAPTER IV

THE THEORY OF RADIATION

&quot;The whole subject of electrical radiation seems working itself out splendidly.&quot;

OLIVER LODGE, Phil. Mag., August, 1888.

The theory of atomic spectra divides itself rather sharply into two parts :

the theory of the energy levels and the corresponding states, and the theory
of the radiative process whereby the spectral lines arise through transitions

between states. The preceding chapters have provided us with most of the

apparatus needed for an attack on the first part of the problem. In this

chapter we present the general theory underlying the radiative process.
That radiation is to be treated according to the general scheme of Max

well s electromagnetic theory is unquestioned by physicists to-day, but it

is also recognized that these laws require some kind of quantum-theoretical

modification, to be embraced in a general theory of quantum electro

dynamics. Such a theory of quantum electrodynamics cannot be said to

exist in definitive form to-day. When it is developed it will probably produce
alterations in the Hamiltonian which will change the details of the theory
of atomic energy levels as we present it. But the general structure of

the theory of the energy levels can hardly be affected since it possesses so

many points of close contact with the experimental data. Likewise it is

possible at present to develop the theory of radiation along general lines

with considerable assurance that such alterations as are later brought by a

revision of the theory of the electromagnetic field will not affect our main
conclusions.

1. Transition probabilities.

Emission of light takes place when there is a transition of an atom from
a state of higher to a state of lower energy a quantum jump. Likewise

absorption takes place by an upward transition that is caused by the action

ofthe fields of the radiation on the atom. We start the consideration of these

processes by a somewhat phenomenological method due to Einstein.* The

argument is independent of special views concerning the electrodynamics of

the transition. Let an atom be in an excited level A, that is, in a level of

more than the minimum energy. Einstein then ascribes to it a certain pro

bability per unit time, A(A, JJ), of making a spontaneous transition with

emission of radiation to each level B of lower energy. The light sent out in

the process has the wave-number (EA Es)/hc according to Bohr s rule.

*
EINSTEIN, Phys. Zeits. 18, 121 (1917).
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Then if the number of atoms In the level A is N(A), due to spontaneous

emission processes

(1)

where the summation is over all states of lower energy. The quantity r(A)

defined by y^ = A(4, B) (2)
B

is called the mean life of the level A, for if the only processes occurring are

those of spontaneous emission

N(A)^N (A)e-
{̂ A

\ (3)

from which it follows that r(A) is the mean time which an atom remains

in the excited leveL

Einstein also ascribes to the atom two probability coefficients repre

senting the effectiveness of the radiation field in causing transitions. The

radiation field is supposed to be isotropic and unpolarized and to have

spectral energy p(a) du in unit volume in the wave-number range da at a.

If C is an energy level higher than A (where A is now not necessarily an

excited level), then the field produces transitions from A to C by absorption

at the rate

where a is the wave number corresponding to the transition, by Bohr s rule.

Also the radiation stimulates or induces emission processes from C to A at

a rate given by N
^C) B(Gy A)p(a).

The coefficients A and B are fundamental measures of the interaction of the

atom with the radiation field and have the same values whether there is

thermal equilibrium or not.

By purely statistical considerations we can find relations between the

A s and B s, for we know that in thermal equilibrium

(a) the relative numbers of atoms in different levels are given by the

Maxwell-Boltzmann law,

N(A)=g(A)erW, (4)

where g(A) is the statistical weight of the level A ,

(b) the radiation density is given by Planck s formula,

The argument now uses the principle of detailed balancing, according to

which in statistical equilibrium the rates of each elementary process and its

inverse are equal. The two kinds of emission are regarded together as one

elementary process and the one kind of absorption as its inverse. This
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seemed strange until Dime s radiation theory* showed that the two kinds

of emission were really related to the same process. Hence in equilibrium

we have
N(A)B(A,C) P(a) = N(C)[A(C,A) + B(C,A) P()]. (6)

Tn order that the last three equations be consistent we must have

g(A)B(A,C)=g(C)B(C9 A)

A(C i A) = Birhca*B(C,A).
( }

Using the latter relation the total rate of the emission processes can be

written in the form

N(C)A(C,A)[n(a) + ll where
n(&amp;lt;r)

=
p(&amp;lt;r)lBirkco*. (8)

That this is a significant way of writing it is shown by the Dirac radiation

theory, which is a quantum-mechanical outgrowth of the method of Ray-

leigh and Jeansf and DebyeJ for handling the statistical mechanics of

the radiation field. The number of degrees of freedom of the field asso

ciated with waves in the wave-number range do- at or is shown to be S-rra
2da

per unit volume; the size of quantum associated with each such degree of

freedom is kcu, therefore n(a) is the mean number of quanta per degree of

freedom for the field coordinates belonging to waves of wave-number or.

In the Dirac theory the electromagnetic field and the emitting or absorb

ing matter are treated as a single dynamical system. Because of the rather

weak coupling between the two parts, field and matter, it is possible to make

fairly precise statements concerning the amount of energy in the field and

the amount of energy in the matter. (If we regard two separate systems as

one system, the two Hamiltonians commute with one another and so each

commutes with their sum, therefore eigenvalues of each are constants ofthe

motion. Butifa small interaction is present, this is only approximatelytrue.)

The emission process consists of a change in the system whereby energy

leaves the matter and raises the quantum number of one of the field s

degrees of freedom by one. The absorption process is a change in which one

ofthe field s degrees offreedom has its quantum number diminished by one,

the energy going into the matter.

Without going into details we can say that the probability of these in

ternal changes in unit time is proportional to the square of the matrix com

ponent of the interaction energy between the field and the matter. The

matrix component is taken in a representation in which the states ofthe two

parts are labelled by quantum numbers; the component to use is the one

whose initial indices specify the initial state and whose final indices specify

the final state. The whole transition probability will be very small unless the

* DERAC, Quantum Mechanics, Chapter xi; see also FERMI, Rev. Mod. Phys, 4, 87 (1932).

f JEANS, Dynamical Theory of Oases, Chapter xvi; Phil. Mag. 20, 953 (1910).

f DEBYE, Ann. der Phys. 33, 1427 (1910).

cs 6
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initial and final states of the whole system have the same (or almost the

same) energy.

Each of the coordinates for a wave of wave-number a is dynamically

equivalent to a harmonic oscillatorofthe frequency v = ccr. Hence the possible

field energies associated with each wave are hv (n -f |), where n is an integer.

The interaction of the field with the matter is a linear function of the

wave amplitudes, so the matrix components, so far as the change in any
field-wave s quantum number is concerned, contain as a factor (n q\ri),

where n and n are the initial and final quantum numbers of the degree of

freedom in question and q is the numerical value of its amplitude. Since the

field coordinates are dynamically like harmonic oscillators, we may take for

the matrix components of q the well-known values

=
,

_

(Vn. (n = 72, !)

All others are zero. As increase in n corresponds to increase in field energy,

or emission by the matter, and decrease in n corresponds to absorption, the

lack of symmetry is just what we need to get the spontaneous emission as

well as the induced: j(7i|gj% + l)J
2 is proportional to n+l, so emission by

passage of energy to this degree offreedom can occur even in the absence of

radiation (^= 0) in it. But |(n|g|n l)j
2 is proportional to n, so absorption

by passage of energy from this wave to the matter is simply proportional

to the amount of energy already present in that wave in excess of the zero

point energy, ffiv. The actual emission in the statistical ensemble will there

fore be proportional to \n(a) -f 1] as in (8), where n(d) is the mean number of

quanta in all of the degrees of freedom of the right frequency.
This is just a sketch ofthe theory, given in the hope that it will make clear

the way in which the two apparently different kinds of emission are really

two parts of a single process. We conclude this outline with the remark that

it is not quite true that the only transitions occurring are those in which the

atom s change in energy is just opposite to that of the field. This gives rise

to the natural breadth of spectral lines, the quantum-mechanical analogue
of the fact in classical theory that a radiating oscillator has its amplitude

damped out by the loss of energy by radiation. Thus the wave-train emitted

in a single process is finite and not monochromatic when expressed as a sum
of monochromatic waves with a Fourier integral. This point has been

studied in detail by Weisskopf and Wigner.* They find that the relative

probability of emission in the range da at a, where a is now measured from
the wave-number given by Bohr s rule, is

, 1 / I 1 \
where o- = I -yrv + -TTrJ ( 10)u

4xTC\r(A) r(C)J
^ /~7T7/T2&amp;gt;

TT I -f
(cr/&amp;lt;7 )

2

* WEISSKOPF and WIGNEE, Zeits. fiir Phys. 63, 54 (1930).
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This tells the distribution of energy over the line and relates the half-width,
&amp;lt;TO , to the harmonic mean of the mean lives of the initial and final levels.

This line width has no practical importance for ordinary spectroscopy as it

is smaller than the width of image produced in spectroscopic instruments

owing to their finite resolving power.

2. Classical electromagnetic theory.

We regard radiation as a spatial flow of energy governed essentially by
Maxwell s equations. In these we have a scalar field p which is the electric

charge density in electrostatic units and a vector field I which is the electric

current density in electromagnetic units. These fields are connected by an

equation of continuity,
-^ g

c dt

which expresses the conservation of electric substance.

Related to p and I are two vector fields, the electric field S and the

magnetic field ^, which are characterized by MaxwelPs equations

(2a)

0, (2b)

(2c)

-^. SB 4fljr. (2d)
c ot

These equations express respectively the fundamental laws:

(a) Non-existence of a magnetic stuff analogous to electric charge.

(6) Faraday s law of electromagnetic induction.

(c) The Coulomb law in electrostatics.

(d) The Ampere law for the magnetic field due to electric currents, to

gether with Maxwell s displacement-current hypothesis.

There are various auxiliary fields which may be conveniently employed
in dealing with these equations, the most important of which are the scalar

and vector potentials cp and A. These have the property that ifthey are made
to satisfy the equations

0)

6-2
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and ^, derived from them by the formulas

IM

will satisfy Maxwell s equations. It is to be noticed that ifp s one may set

9 = and derive S and 3tf simply from A. This is a usual procedure in dealing

with electromagnetic waves at points far from their source.

In the theory ofthe differential equations (3), it is shown that the solution

for the scalar potential can be written as

* y z
1

i )
-
J P&y^dxdydz,

(5)

in which t= t R/c,

and J8 is the distance between the volume element dxdydz and the point
x y

r

z
f

. This is known as the retarded-potential solution because each volume

element contributes to the potential according to the value of the charge

density there at a time earlier than the instant t
f

by the time it takes light

to travel from the volume element to the point x y
f

z . An exactly similar

formula gives A in terms of J.

To develop the classical theory of radiation in a form suitable for use in

the quantum theory we need to expand this retarded potential formula

under the assumptions that p and Jvary harmonically with the time, i.e. we
take p(xyzt) as the real part of the expression p(xyz)e^

ivi
. Here p(xyz)

may be complex, as in the case ofa rotating unsymmetrical charge distribu

tion. Hence we write

where I is in general a bivector [a vector of the form (Jp -f iiy] . In terms of p
and I the equation of continuity becomes

div/+$fep= 0, (7)

where Jc= 2?rv/c
= 27rcr.

3. Expansion of the retarded potential.

In the theory ofatomic spectra p andJ are essentially zero outside a sphere
of radius small compared to &&quot;

1
. This suggests an appropriate development

oftheretarded-potential formula according to powers of k. In the expression
/ p-ikR

&amp;lt;?(x y z t )~ eW^JpLifo (1)

we may use the expansion*

* BATEMAN, Partial Differential Equations, p. 388, Example 4.
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where r and r are the radii to the points x y z and x y
f

z
,
w is the angle

between them, and A and ^ are Bessel functions:

( $ )

This shows us that the potential given by (1) corresponds to a system of

diverging spherical waves, since

We shall be interested only in the two leading terms in Z,\(kr
r

). The first

measures the transport of energy, the second that of angular momentum;
the higher terms correspond to local fields near the oscillating charge
distribution.

Substituting (2) in (1), we find for the amplitude of the Ath diverging wave

At this point we introduce the classification of terms by powers of Jcr,

instead of by the integer A. We shall be interested only in the first three

terms. Since

l*&amp;lt;r 1 ^ /9}j_l\l 9/ O^_i_Q\KT i . a. o...(^A-r l;\ .i^A-roj

we find for the leading terms in the scalar potential

tftrivi
-i}

(P
== ^~

* l

A corresponding expression holds for A on replacing p by I. Here the terms

are expressed in terms of the successive moments of the charge distribution.

The first term vanishes, the second gives what is called (electric-) dipole

radiation, the third gives (electric-) quadrupole radiation. It has not been

necessary thus far in spectroscopy to consider higher terms.

We define the dipole and quadrupole moments of p by the equations

P=
fprdv,

91
=jprrdv. (7)

Using the values of the Legendre polynomials, we readily find that
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where 3ts is written for the invariant sum of the diagonal terms in 91, and

r
Q
is a unit vector in the direction r .

Let us make the corresponding reductions for the vector potential. First

we note that from the equation of continuity and the fact that p andJvanish

everywhere outside a finite sphere we may write

=z f

where g is any scalar, vector or dyadic function of position that is finite

everywhere that p and I are not zero. Putting g= 1, we find
Jpcfo

= 0, as

already asserted. Putting g = r and rr, we find the relations

fldv
= ikP,

J(Ir
+ rl)dv= %

which enable us to express the vector potential in terms of the moments of

the charge distribution. Because of the occurrence of k in these formulas we

need only the first two terms inA to have terms to the order &2 in the result:

f /* / \ f
J /^V+^M_ I \

The first term gives the part of the vector potential associated with the

dipole radiation. The second consists of two parts:

=ir^
The first term here is proportional to the quadrupole moment; the second

can be written as
r

-r;xM, where
M=ljrxldv9 (8)

the magnetic moment of the electric current distribution. The second term

in A therefore represents part of the electric-quadrupole radiation field and

the whole of the magnetic-dipole radiation field.

To summarize, the scalar and vector potentials up to the second power of

k in the moments of the charge distribution are

9 =

^

Since the coordinates of the volume elements of the charge and current

distribution no longer appear, we have here, for convenience in later work,
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used unprimed letters to denote the position and time for which the poten
tials are computed.

4. The correspondence principle for emission.

Before calculating the radiation field associated with the potentials of the

preceding section let us investigate their connection with the problem of

emission in the quantum theory. The most fruitful idea in passing from the

earlier atomic theory to the quantum mechanics was the correspondence

principle of Bohr. From the principles pf quantization developed for con

ditionally periodic dynamical systems it followed that in the asymptotic
limit of transitions between states of large quantum numbers the spectro-

scopic frequencies of Bohr approached equality with actual frequencies of

the mechanical motion. In classical mechanics the energy E of such a

system is expressible in terms of a set of constants of the motion,

Jl3 J2 , ..., Jn3 known as action variables. The quantum conditions re

strict these J s to values that are integral multiples of h,

J
fc
= %&. (&=l,2,...,n; %.,aninteger) (1)

Tne classical frequencies of the motion are given by the formula

fc
-_-

,

so that the combination frequencies which occur in a Fourier expansion of

the motion are of the form
O -m

Er^ =%rkwr . (rk , integers) (3)
k k vJh

On the other hand, the quantum frequency associated with the transition

from the set of quantum numbers

by Bohr s frequency condition is

Developing this in a power series in the r s, we have

^ dE

The first term is just the classical frequency; the other terms represent

quantum corrections. In the special case in which E is a linear function of

the J 5

s, which is that of a system of harmonic oscillators, the higher terms

vanish so that the correspondence is exact.

Bohr s great idea was that this approximate connection probably holds

not only for the frequencies, but for other features of the spectrum as well.
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According to the frequency relation we have a definite term in the Fourier

analysis of the motion, namely, the combination term with multiples

rla r2 , ..., Tn , correlated with a definite quantum transition, namely

(n + Tl9 ...)-^(w 1 , ...), Although the radiation process in quantum theory
occurs in jumps, whereas the classical radiation process is essentially con

tinuous, Bohr postulated that statistically the transition probabilities will

be such that the expected rate of radiation for a particular transition will

have a similar asymptotic correlation with the corresponding Fourier com

ponent of the motion. Likewise the polarization of the radiation is postu

lated to be that of the classical radiation due to the corresponding Fourier

component.
Thus for the electric-dipole radiation the procedure is to develop the

components of P for motion in the state specified by %, w2 , ..., nn in a

Fourier series, for example,

(6)

where each r runs over all positive and negative integers. The notation for

the coefficient is chpsen to suggest its analogy with the corresponding matrix

component in quantum mechanics. Exploitation of this analogy corre

sponds to the first step in the formulation of quantum mechanics as it was

done by Heisenberg.* Since P(t) is real,

[*!,. ..JP^K-T!,. ..]
= [%,. .-IPJnj+ Ti,...], (7)

which is the analogue of the Hermitian condition for matrix components.

By the correspondence principle, therefore, the rate of radiation of energy

by quantum jumps in the transition (% -f TX ,...)-&amp;gt; (% &amp;gt; )
is related to the

classical rate of radiation by the Fourier components ofP whose frequency

corresponds to the quantum frequency in the sense of (5). That is, there is an

asymptotic connection between the rate of radiation of this frequency and
the classical rate of radiation due to the dipole moment,

rl3 ...]e
2^, (8)

where v^Tir^EfdJ^ and ^ indicates the real part of the expression in

braces.

The expected rate of radiation in quantum theory is

^A^ + T!,.. .;%,...),

where A is the spontaneous-transition probability for the transition in

question. It is this which is postulated to be asymptotically equal to the

classical rate of radiation.

* HEISENBEEG, Zeits. fur Phys. 33, 879 (1925).
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For large quantum numbers and small r s the value of this classical rate

of radiation does not depend much on whether we use the Fourier com

ponents of the motion of the initial state or the final state. But for smaller

quantum numbers these two sets of Fourier amplitudes may be greatly
different and the correspondence principle does not saywhich should be used .

In addition to these two possibilities one might even consider basing the

Fourier analysis on some intermediate motion, say one with quantum
numbers (% -f J^ ,

n2 -f |r2 ,
. . .

)
when considering this jump. All suchschemes

are equally good asymptotically.

Bohr never offered the correspondence principle as more than an intuitive

view that it is in this direction that we should seek for a more complete

quantum theory it was in this direction that Heisenberg found it. It is not

our aim here to develop quantum mechanics inductively from the corre

spondence principle. Rather we wish merely to sketch its place in the theory
of atomic spectra. Its importance in leading to the discovery of quantum
mechanics cannot be over-emphasized; naturally, after that discovery, it no

longer occupies a prominent place in the details of our subject. It is really

surprising how many developments were made with the correspondence

principle in its original form. The selection rules were obtained by arguments

concerning the absence of certain Fourier components. If certain of these

were absent in the initial and final state, and in a certain class of inter

mediate states as well, one felt very confident in the prediction that the

associated quantum jumps had zero probability. For a complete account

of detailed accomplishments of this kind see Van Vleck, Quantum Principles

and Line Spectra*
The lack ofsymmetry between initial and final states which characterizes

the above discussion was remedied, and the verscharfung of the corre

spondence principle accomplished, by Heisenberg s replacement of the

Fourier components by the corresponding matrix components. We shall use

the principle in this form.

Therefore we postulate that the radiation field accompanying a spon
taneous transition from a state a ofhigher energy to a state b oflower energy

is, as to angular intensity distribution and polarization, the same as that

given by the classical theory for a charge distribution whose moments are

where (a\ |6) is the matrix component of the kind of electric or magnetic
moment under consideration. Moreover, the spontaneous-transition pro

bability is to be taken as =- times the classical rate of radiation ofthis charge

distribution.
* National Research Council Bulletin No. 54, Washington, 1926.
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For an atom the various moments which we shall need are expressed in

terms of the coordinates of the electrons by the formulas

It is the matrix components of these quantities which are to be used in

calculating the radiation.

We haye preferred to put the theory of emission on the correspondence-

principle basis merely to avoid the lengthy calculations needed to derive the

results by quantum-mechanical methods. The postulates are justified in

Dime s radiation theory.

5. The dipole-radiation field.

Let us investigate the field associated with the terms in 349 which depend
on the dipole moment, P. Using 244 we find, on retaining only the r~l and

r~2
terms,

where $ is the unit dyadic ii+jj+ kk.

The flow of energy is given by the Poynting vector,

(2)
?r

Since S and ^ are given by the real parts of (1), the time average radiation

is given by __ _
(3)

whereS andJf are as in
(
1
) . Therefore at large distances the flow ofenergy is

-r.r,}-P\^rQ . (4)

In the theory of atomic spectra P is nearly always given by formulas like

93 11. For transitions in which Am= 0, the dipole moment is of the form Pk 9

directed along the z-axis, and the radiation field is that of a simple linear

oscillator. In this case, in any direction of observation, the radiation is

linearly polarized with the electric vector in the plane determined by r

and P. The intensity at an angle 9 with the z-axis is

(5)
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so the entire rate of radiation through a large sphere in all directions is

*. (6)
o *

For transitions in whichAm= 1, the vector Pis ofthe formVfP (i if), so

The vector rotates in the xy plane, in the clockwise direction for Am =4-1

when viewed from the positive ^-direction, and in the opposite sense for

Am= 1. In either case the intensity in a direction making an angle 6 with

the z-axis is 7,4

, (7)

and the whole radiation in all directions is the same as (6).

We may now write down the transition probabilities. In view of the

postulate of 44
, they are

A(a,6)-^p|(a|P|&)|, (8)

for the transition from the upper state a to the lower state 6. For either

value of Am, we may replace P2
by 4|(a|P|6)j

2 in equations (5) and (7) to

find the angular intensity distribution.

Before calculating the polarization in the case Am= + 1, let us consider

the general question of the type of wave represented by &{$e27 &quot;

}, where

$=z$r+ iffi } a constant bivector. The variation with time,

^{Se^ivl
}
= Sr GQs2&amp;lt;rrvt

- #
t sin2irtf, (9)

is such that the real &amp;lt;? s end-point describes an ellipse turning from ffi into

&amp;lt;fr . If this direction is counter-clockwise on looking at the plane normal to

TQ in the direction opposite to r (that is, as you would be faced if the light

were to enter your eyes), the polarization is called left-elliptic. In general,

&amp;lt;fr and fi may be oblique, in which case they form a pair of conjugate semi-

diameters of the ellipse. It is usually more convenient to shift the phase so

that they are perpendicular and so coincide with the principal axes of the

ellipse. We may write Se^^-Se^e^1^ ^ and choose S so that the real and

imaginaryparts ofSei8 are perpendicular. This readily leads to the following

equation for S,

Usually the form of the calculations is such that the location ofthe principal

axes is evident from symmetry. Thus in atomic radiation problems, the

axes are along the meridians and latitude circles of the polar coordinates.

We shall denote by 6 and
&amp;lt;p

the unit vectors at each point in the direction
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of increasing 6 and
&amp;lt;p respectively so that r ,

9
, cp are the unit vectors of a

right-handed system.

Then, if P=VfP (i ij) 9

ex (6 e +
&amp;lt;p 9 Hf tj)

=
(0 cos0 icp )e^

9
. (10)

The radiation is, therefore, for the upper sign, right circularly polarized in

the direction 5 = 0, right elliptically polarized in directions
0&amp;lt;#&amp;lt;77/2,

linearly polarized in the equatorial plane, and left elliptically polarized in

the
e

southern hemisphere. For this case the electric moment s variation in

time is represented by a point rotating in a circle in the &y-plane in the same

sense as the rotation of the electric vector in the light wave. The factor

e it?

occurring in $ attends to the obvious detail that the phase in the light

wave sent in the direction 9 has a constant relation to the phase ofP relative

to the direction of observation.

Next we consider the transport of angular momentum in the radiation

field. The volume density of electromagnetic momentum in the field is given

by S/c
2

. where $ is the Poynting vector. The corresponding density of

angular momentum relative to the origin is therefore r x S/c
2

,
and as this is

moving outward with velocity c, the transport of angular momentum

through unit area normal to r is r x Sjc.

Another way to find the angular-momentum transport is to consider the

equation o

-S) = 0, (11)

in which Z is Maxwell s stress tensor for the electromagnetic field

This shows that the negative of the stress tensor gives the transport of

electromagnetic momentum, in the sense that Z*n gives the amount of

momentum crossing unit area normal to n toward positive n in unit time.

Hence the momentum transported radially outward is 2&amp;gt;r and the

angular-momentum transport corresponding to this is

- r x
(&amp;gt;r )

= - -
(
r x

Since the leading term in S in the dipole-radiation field is perpendicular
to r, we need to consider the next term to get the angular-momentum trans

port. Using (1), we find the time mean angular-momentum transport at

large distances to be
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per unit solid angle. IfF is real except for a phase factor e^, as whenAm= 0,

the radiation of angular momentum vanishes. For Am= I, where F is of

the form V|P (i ij), the value of Tav is

. (12)
oTT

From the axial symmetry we see that the result of integration over all

directions must be a vector along the z-axis. Its value is

The radiation for Am = -f 1 is thus in the direction k which is in the right

direction to compensate for the increase in angular momentum of the atom.

Moreover the rate of radiation of angular momentum bears the correct ratio

to the rate of radiation of energy to insure that the angular momentum ft is

radiated in the same time as the energy hv. This is very satisfactory for

the correspondence principle, and was formerly used as a foundation for the

selection rule in the angular-momentum quantum numbers.*

It may be objected that we have proved too much, since we found no

radiation of angular momentum forAm= 0. To be sure there is no change in

the ^-component of the atom s angular momentum in this case, but there

may be a change in the resultant angular momentum, j 9 according to 93 11.

The answer is that the classical analogy breaks down here, or better that the

classical analogue of the quantum-mechanical state for an assignedj and m
must be considered to involve an average over all orientations of the com

ponent ofJTin theo^-plane. This time average ofJx orJ^ is zero bysymmetry,

and also since the diagonal matrix components of Jx and Jy are zero. From

this standpoint the perpendicular components ofJ have an average value

of zero before and after radiation, so there is no change in their value, and

this agrees with the vanishing value of the angular-momentum transport in

this case.

PROBLEM

Show that the magnetic-dipole radiation field is obtained by writing 34? for and - & for 34P

and replacing P byM in (1). Hence show that for magnetic-dipole radiation

!HMW, (13)

6. The quadrupole-radiation field.

The qruadrupole-radiation field may be handled in an analogous fashion.

For brevity we omit the discussion of the transport of angular momentum

* E.UBDJOWICZ, Phys. Zeits. 19, 440 (1918);

BOHR, Quantentheorie. der Linienspektren, Part I, p. 48.



94 THE THEORY OF BADIATION 64

in this case. The terms responsible for the energy flow are, from the poten

tials 349, fl3 p2iri(vt-or)

*-^
e

r-&amp;lt;3-r&amp;lt;r&amp;lt;tY&-ro)

(1)

so that the Poynting vector is, from 543,

Z*6

3~r r H91-r )pr . (2)

We are not ready-armed from Chapter in with the formulas for the

dependence of the matrix components of 9 on
m&amp;gt;

so we must stop to work

them,out. 9i is a dyadic formed ofthe sum ofdyads er^ for each electron

(4
4
9), and so is a sum of dyads formed from vectors of type T considered in

83 et seq. We can find the dependence onm of any such dyad by calculating

its matrix components from the matrix components of T given by 9311.

Thus,

(ocjm|riT2|a7m
/

)= S ((i}m\Tl \ofj m^(^j&quot;m \T^ j
/mr

). (3)
at*j* m&quot;

This enables us to see that the selection rules on j and m for T^T* are Aj or

Am= 2, 1
, or 0, In this way we may prepare a table of all non-vanishing

matrix components for any dyadic made up ofa linear combination ofdyads

of vectors of type T, If this be done for a general dyadic , the formulas can

be expressed as the sum of the matrix components of the symmetric part

and the antisymmetric part. The latter is equivalent to a vector whose

matrix components show the same dependence on m as a vector of type T.

Since any symmetric dyadic is the sum of two symmetric dyads, in making
the calculations we may as well put 1\= T2

= T to get a symmetric dyad.

Calculations of this type were first made by Rubinowicz.* It turns out

that each matrix component can be expressed as a numerical coefficient

multiplying basic dyadics, S(Ara), which depend on Am only, except that

(ajm\TT\oLJm) also includes an extra term which is a numerical factor

times the identical dyadic, ^ = ii+jj + kk. These dyadics, normalized so

that ! (
Am

)&quot;j|(
Am

)
= 1, are

f ( 1) =J[+ ik i(kj+jk)} (4)

ffi(O) =V|[M-i-ijj].

They determine the angular intensity distribution and polarization in its

*
ETJBEJTOWICZ, Zeits. fur Phys. 61, 338 (1930).
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dependence on Am. We may readily calculate the values of the vectorial

factors occurring in (1) for these basic dyadics:

(S
-
for&amp;lt;,)$( 2)*r = |sin# e 2i

*(6 cos0 icpo)

(3
-

tVo)-fl( l)fo=^9
(eocos20 *9 oos0)

(3-Vo)-(0)^o -V|sinooBfle

(3-Vo) 3-r =0;

so that the spherically symmetric part of (&amp;lt;x.jm\TT\afjm) does not con

tribute to the radiation. With these factors it is easy to see that the polariza

tion of the light depends on the direction of observation and on Am

according to the scheme

Am=-i-2 Am=-fl Am=0

Here the senses right and left are for the positive values of Am. They are opposite for negative

values of Am and opposite at an angle TT Q in the southern hemisphere.* a and TT mean linear

polarization with &amp;lt;f along cp and respectively. For Am= I the elliptic polarization becomes

circular at 7r/3 and 2-7T/3.

First we consider AJ= for the dyadic r^ . Here occur three sums,

A,= (ajfoja*j+v) (a*j+ vi^ja j),
a*

forv=l,0, 1. Byrec[tdringthatri
xri =0(cf. 1224 and 1229b) hare vanish

ing matrix components, we find a relation, between them,

(2j+ 3)1)!
-D -

(2?
-

!)!&amp;gt;_!
= 0.

If we write D=
(j+ 1)D^-jD^ ,

the matrix components in question become

+ 2:) ft( 2)

l)=D(2m l)V(j +m)(jm+l)( 1)

Similarly for Aj = 1 there occur two sums,

JS?v
= S(aj:ri :a&quot;

&amp;lt;;+v)(a
r

;+vjrf:a j?-l) J

a

for v= 0, 1. The vanishing of the matrix of rt
x r^ here shows that

If we let
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these matrix components are

= lE(j + m)(j*m-l)(j + m-2)(jm+l) ft( 2),

(&amp;lt;x,jm\ri
ri \ot jlml)

(6b)

Finally for Aj= 2 the matrix components are multiples ofthe single sum

the complete expressions being

2),

m2
)[(j- l)

2-m2
] t(0). (6c)

The matrix components for Aj= -h I or -f 2 can be written down from
these since the matrices are Hermitian. The dyadic 9J is ofthe form eSr^rz

-

,

i

so that its matrix components are formally like those given above with new
D, JJ, and F which are eS of the D, U, and F for the individual electrons.

i

To calculate the total rate of radiation we need to know that the integral
of the product of each of the first three expressions in (5) by its complex
conjugate over all directions is 4-Tr/o. Hence using the postulate of 44

, the

total rate of radiation associated with the transition (oy m-&amp;gt; oc /m ) is

where the square of the dyadic indicates the double-dot product of the

dyadic with its complex conjugate.
This gives for the corresponding probability of spontaneous emission

A(*jm,* j m )= ?^
5

J(ajm|%|aym )]
2
. (7)

Examining the formulas for the matrixcomponents we see that transitions

between the following values of j: 0-&amp;gt;Q, J-&amp;gt;|,
and 1 ^ 0, have vanishing

intensity. Likewise in the dipole- radiation formulas the transitions J=
-&amp;gt;j=0 have vanishing intensity. These are special cases of a general rule,

The 2n-pole radiation is connected with a change in the resultant angular
momentum of the electromagnetic field by n units. Since there is con
servation of the total angular momentum, the vector sum of that of the
atom plus that of the field remains constant. We must then have
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wherej is the resultant angular momentum ofthe atom before radiation and

/ its value after the transition.

Brinkman* has developed a group-theoretical method of obtaining the

qiiadrupole-moment matrix components. The next term, or octopole

radiation, has been considered briefly by Huff and Houston.j

7. Spectral lines in natural excitation.

When an atom is unperturbed by external fields, its Hamiltonian com
mutes with the resultant angular momentum J. Asa, consequence (3

3
8) an

energy level corresponding to a given value ofj is (2j+ l)-fold degenerate,
each ofthe different states being characterized by a differentvalue ofm. Such
a set of (2/+1) states we shall call a level. When the atom is perturbed and
the different states do not all have the same energy it is still convenient to

refer to such a set of states by a generic name, so we shall also use level in

this wider sense. Likewise we define the word line to mean the radiation

associated with all possible transition between the states belonging to two
levels. The radiation resulting from a transition between a particular pair of

states we call a component of the line. All components have the same wave
number unless the atom is perturbed by an external field.

The actual emitted intensity of the component from state a to state b in

ergs/second is equal to r/ ,. . T/ x
,& ^ ,

), (1)

where N(a) is the number of atoms in state a and A(a, b) is the spontaneous
emission probability for that transition. This equation holds only when the

radiation density present is so small that the induced emission is negligible.
In actual practice it is very difficult to know N(a) and hence to make
absolute comparisons between theory and experiment for emission inten

sity. Most work is therefore on relative intensities ofrelated groups of lines.

In most light sources the conditions of excitation of the atoms are suffi

ciently isotropic that it is safe to assume that the numbers of atoms in the

different states of the same level are equal. This is called natural excitation.

If the excitation occurs in some definitely non-isotropic way, as by absorp
tion from a unidirectional beam of light or by impacts from a unidirectional

beam of electrons, large departures from natural excitation may be pro
duced. The study of such effectsJ raises a whole complex of problems some
what detached from the main body of spectroscopy. We shall always
assume natural excitation unless the contrary is stated.

* BRINKMAK, Dissertation Utrecht, 1932.

f HUFF and HOUSTON, Phys. Rev. 38, 842 (1930).

j For a review of this field see MITCHELL and ZEMANSKY, Resonance Radiation and Excited

Atoms, Cambridge University Press, 1934.
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The total intensity of a line is the sum ofthe intensities of its components.
Hence in natural excitation for the line from level A to level -B,

(2)

in the case of dipole radiation, by 548. The sum of the squared matrix com

ponents occurring here we shall define as the strength of the line, B(A 9 B).

We shall also find it convenient to call |(&j.P|6)f
2 the strength of the com

ponent a, b and to introduce the partial sums over a and 6 alone, with the

notation ^ j?)
=

| (
a \P\b)\*, B(A 9 b) =S \(a\P\b)\^

b a

S(A, B) =S 8(0, -B)
=S B(A , b)

= S(a, 6) .

a 6 a&

The intensity of a particular line is therefore proportional to the number of

atoms in any one of the initial states, to a4 and to S(A, B). This represents

a slight departure from the traditional procedure, where the intensity is

written as proportional to the total number of atoms in the initial level,

N
(
A

)
:

I(A, B) = N(A) hv A(A, B).

As N(A) (2jA 4- 1) N(a), this gives

Here A is the spontaneous-transition probability of Einstein. It has the

disadvantage that it is not symmetrical in the initial and final levels owing
to the factor (2jA -f

I)&quot;&quot;

1 which relates it to the symmetrical S(A, B). In later

work we shall find formulas for the strengths of certain classes of lines where

one level belongs to one group and the other to another group (e.g. multi-

plets). For the strength of a line it will not matter in such formulas whether

A or B is the initial level, whereas ifjA ^jB ,
the Einstein A s are different in

the two cases. Therefore we shall regard the strengths as the more con

venient theoretical measure of line intensities.

Before calculating S(A, B) let us consider what properties we expect it to

have. First, since the excitation is isotropic and there is no external field

we expect the radiation to be of equal intensity in all directions, and un-

polarized. Second, if the initial conditions are isotropic we expect the

physical situation to remain so during the radiation process. This means that

the mean life of each state of level A must be the same. The mean life of a

state a is the reciprocal of the total transition probability from a to all lower

states b,c,d, ... belonging to all lower levels B, C, D, .... That is, it is the

reciprocal of 64-TAr3
-

This should have the same value for each state a, otherwise if the excitation
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is cut off tlie numbers of atoms in the different states of level A will be un

equal after a time, and a non-isotropic situation will have grown out of an

isotropic one. Since there is no very simple general relation between the

levels B y C, ... for all atoms, we expect this to be true for each suramand

S(a, B). Likewise because of the symmetry of |(#|P|6)I
2 with regard to a

and b, it follows that if S(a, B) is independent of a, then B(A, b) is indepen
dent of 6.

We shall now show that the dipole radiation in the transition aj -&amp;gt; a / is

isotropic and unpolarized. By 545 the intensity in the direction 6 ofradiation

plane-polarized in the direction 8 is proportional to

S I(ajm|P|a /m)|
2 sin20. (Am= 0) (4a)

m=-j

There will also be right- and left-elliptically polarized radiations whose

intensities (5
4
7) are respectively proportional to

(Am* +1) (4b)

(Am=-l) (4c)

That the sum of these three quantities is independent of 8 follows from

133
3; hence the intensity of radiation is the same in all directions. The sum

of the terms for Am= -h 1 and Am= 1 is no longer elliptically polarized

because the right-handed radiation from m-&amp;gt;m-f 1 is of the same intensity

as the left-handed from m-&amp;gt; m 1; it is, however, partially plane

polarized with relative intensities S^ajmlPla j m-f I)]
2

along cp and

Sf(ajm|P|aY+l)|
2 cos2 along 8 (cf. 5410 and 54

9). When the com

ponent is added to that for Am= 0, it follows from 1333 that the resultant

radiation is unpolarized.

The summations over the three values of mb which go with ma
=m have

already been evaluated in 133 1 , where their independence of the value ofm
was noted. Because of this, summation overm merely introduces the factor

(2j+ 1), so for the whole strength of the line a j to a j we have

where S
(^&quot;&amp;gt;

* J )
=

(
2̂ X

) K*/5W )|
2 S

0&quot;&amp;gt;A ()

Everything we have said here about electric-dipole radiation is true for

magnetic-dipole, if we replace P by M, since the dependence on m of M
(4

4
9) is the same as that of P.

For quadrupole radiation the analogue of (2) is

(6)

The strengths for quadrupole lines are defined exactly as for dipole with % in
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place of P. Expressions for the strengths of the various quadrapole lines are

easily calculated from the values of the matrix components in the previous
section. The results are

j- 3) F*.

The partial sums here also have the property of giving unpolarized light of

equal intensity in all directions. The spontaneous transition probability

analogous to (3) is S27rVS(4,S) ,_.A^,^)--
^j-^-j-y-.

(8)

8. Induced emission and absorption.
In view of the relation found in I4 between the probability coefficients

for spontaneous and induced emission and absorption, the formula for

B(A, B) in terms of the matrix components of dipole or quadrapole moment
is given by combining 147 with 743 or 748. That gives the result for the

interaction of an atom with an isotropic unpolarized field.

There is a further point on which we wish information, namely the pro

bability for absorption of light from a unidirectional polarized beam. From
the following argument, we expect this to be simply related to the A(a, b)

for a line component. The emission in the transition a~&amp;gt;6 is a spherical wave
whose intensity and polarization in different directions we have calculated

for the important special cases. Let the angular distribution factor be

f(09 &amp;lt;p)da&amp;gt;,
where

Jfda&amp;gt;=l
over all directions, and let

/(0,&amp;lt;p)
be the unit

bivector (// 1) normal to the direction of propagation, n, which gives the

polarization of the wave emitted in the direction B, 9. We suppose for con
venience that / is normalized so that its real and imaginary parts are

perpendicular, as discussed in 54 .

If A(a, b) is the whole transition probability (5
48 or 647), then we can say

statistically that A(a, &)/(0,&amp;lt;p)&o is the transition probability for processes
in which the light is sent out in the solid angle da&amp;gt; at 6, 9. This emission takes

place with the polarization described by /. Hence for the probability of

spontaneous transition from a to b with emission in the solid angle dw at

6, 9, and with the polarization I we may write

A(a,6 s fl,9, /)&!&amp;gt;
=

A(a,6)/(fl, ? )&&amp;gt;. (1)

There will also be stimulated emission. This and the spontaneous emission
constitute the inverse process to absorption from a beam whose range of

directions is dcu at 0, 9. Of the 87ra2da waves per unit volume (we say waves
as a short expression for degrees of freedom of the field) there are 2azdada)

associated with waves which travel in directions contained in
da&amp;gt;,

the factor

two arising from the two independent states of polarization associated with
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each direction of propagation. We are at liberty to choose the independent

states of polarization in any convenient way. The natural way in discussing

the transitions a ^ b of the atom, is to choose I as one of the canonical states

of polarization and to introduce m3 orthogonal to / in the sense l*m = 0, to

describe the other.

Let the intensity of the beam be p(a, I) dada*. This is the volume density

of energy in wave-number range da of waves whose directions are in the

cone da} and with their polarization described by I. We define the probability

of absorption (or induced emission) of this radiation so as to cause a transi

tion of the atom from a to b as

Then, as in 146, ifa is the upper state, the balance ofemission and absorption

between these degrees offreedom and the atom when in thermal equilibrium

gives

N(a)[A(a, b, 8, 9, 1) +P(a, /) B(a, b, 6, 9, 1)]
= N(b) B(b, a, d, 9, /)/&amp;gt;(*, I).

Using the Maxwell-Boltzmann law 144 and the Planck law 145 divided by
8?r to get p(cr, I) and realizing that here the statistical weights are each unity,

we have B (a, 6, 8, 9, I)
= B(b, a, 6, 9, 1)

(2)

A(a,b,6,&amp;lt;t,l)
=

hco*B(a,b,e,&amp;lt;p,l).

The same equations hold for the other state of polarization, m, but as we
have chosen I in accordance with the actual polarization of the wave sent

out in the emission process, A(a,b, 5, 9, m) = 0, and so the corresponding

absorption coefficient vanishes. Analogous to 148 we may write the rate of

emission processes in the form

N(a) A(a, &, 9, 9, 1) [*(&amp;lt;r)
+ 1] da&amp;gt;, (3)

where n(a) = p(cr5 fyjhca* is the mean number ofquanta per degree offreedom

in the beam in the direction and polarization state under consideration.

Let us consider the description of the polarization a little more closely.

The bivector I may be written in the form

/= 8 cos|S -F icp sinJS, (4)

since we have found in 54 and 64 that the elliptic polarization always has

9 and
&amp;lt;p

for its principal axes when the transitions are between states

labelled by m. The range &amp;lt;
8 ^ 2rr covers all possible types of polarization

according to the scheme

Left
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The bfvector orthogonal to I is

m= 6 sin|S icp cosJS,

which represents a wave of the same ellipticity as that for I but with the

major and minor axes interchanged and the sense of turning, right or left,

reversed.

If the incident light is polarized in some other manner than with regard

to one of the canonically chosen forms, I and m, say with its electric vector

a scalar multiple of the unit bivector e, then it may be expressed as the

resultant of two components polarized as in I and m by the formula

e= l(!*e) + m(m-e). (5)

In this case the absorption is simply |f ^|
2 times the value it has when the

polarization is along I. If the incident light is unpolarized, the intensity is

distributedequally &quot;betweeneach ofanytwo orthogonal states ofpolarization,

so the absorption is half what it would be if the polarization were along I.

Finally let us consider the absorption by a group of atoms in a state of

natural excitation. The total number of transitions per second from the

states b of level B to the states a of level A caused by absorption of light

whose polarization is described by e is

b, a flCcr % f a

Using (1) and the expression 548 for A(a, 6) we find, for example in the case

of dipole radiation, that this equals

We have seen in 74 that the total emission of all components of a line in

natural excitation is unpolarized and of equal intensity in all directions.

The sum here is the total strength of emission per unit solid angle with

polarization e\ this is accordingly l/8rr times the total strength of the line

A, B. Therefore we can express the rate of absorption for the whole line in

terms of the strength S(A, B) as defined in 74 as

03
(6)

~
This gives the number of quanta per second absorbed from a unidirectional

beam of energy density p(&amp;lt;y,e)dadu) As we expect, it depends only on the

energy density and is independent of direction and polarization of the light.

The Einstein B for isotropic radiation obtained from this relation,

877* S(A,B]

bears the proper relation to A(A } B) (cf. 147 and 743).
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The results we have reached by the phenomenologieal method follow from

the Dirac radiation theory. Another derivation which gives correct results

for the stimulated processes but does not give the spontaneous emission is

to treat the electromagnetic field of the light wave as a perturbation, using

the form of the perturbation theory in which the perturbation is regarded
as causing transitions.*

9. Dispersion theory. Scattering, Raman effect.

In the preceding section we have considered the absorption of light by
matter. This occurs when the light frequency corresponds to a transition

frequency to within a small range given by the natural line breadth (1
4
10).

We wish now to consider the interaction of light and matter when there is

no such exact agreement. There are essentially three phenomena:

(a) The macroscopic light wave is propagated with a phase velocity cjn

instead of c, where n is the index of refraction.

(6) There is a scattering of light to all sides without change in the wave-

number. This is called Rayleigh scattering.

(c) There is a scattering to all sides of light in which the frequency is

shifted by an amount corresponding to one of the atomic transitions. This is

the Raman scattering. It is unimportant in monatomic gases but we

mention it to complete the picture.

As subheads under (a) there are special effects like the double refraction

produced when the gas is in an external electric or magnetic field (the Kerr

effect and the Faraday effect respectively).

All these phenomena belong together in the theory, for they are all con

nected with the oscillating moments induced in the atoms by the perturbing

action of the fields of the incident light wave. When these are calculated by

quantum mechanics it is found that they include some terms which oscillate

with the same frequency as the light wave. In addition there are terms

which oscillate with frequencies vv(A,B), where v(A,B) is the Bohr

frequency associated with transition from levelA to level J3. The latter are

responsible for Raman scattering; they are of different frequency and so

cannot be coherent with the incident radiation.

The forced oscillations of the same frequency as the incident light are to

a certain extent coherent with it (that is, to a certain extent they have a

definite phase relation to the phase of the incident light), so it is necessary

to consider the phases in summing the scattered waves due to different

atoms to find the resultant field. This dynamical theory of refraction

goes back to Larmor and Lorentz, but the best modern treatment is by

* DIKAC, Quantum Mechanics, p. 173.
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Darwin.* The net result of such calculations can be simply stated. The

induced dipole moment P is related to the electric vector by

P=a&amp;lt; (1)

where a is the polarizability tensor. Then ifN is the number of molecules per

unit volume, the total dipole moment per unit volume is N&*$. Assuming

that Na&amp;lt;Q, i.e. that the principal values of Na are each small compared

to unity, we may neglect the difference between the effective $ on an atom

and the macroscopic S\ hence the dielectric constant, a tensor, becomes

e=3 + 4^a. (2)

Using the form ofMaxwell s equations for a material medium devoid of free

charge and of unit magnetic susceptibility:

IdS (3)

57-, =-,
c at c ct

we may find plane-wave solutions in which each vector is a constant multiple

of ariv(t-nnrlc)
9 where n is the index of refraction and n a unit vector in the

direction of propagation. The constant amplitudes must satisfy the equa

tions n . = o, nn x g =3tf,

so & and &P are transverse to the direction of propagation. Since the prin

cipal values of the dielectric constant differ from unity by small quantities,

we may write n= 1 -f S. Miirrigating &C between the right-hand pair of (4),

we find that the part of &f which is perpendicular to n satisfies

If a is simply a scalar a, any value of normal to n is admissible and the

index of refraction is n==l + 27rj/ya .

(6)

but if a is not a scalar, then (5) shows that
8/277^7&quot;

is equal to an eigenvalue of

the tensor a regarded as a two-dimensional tensor in the plane normal to n.

The two eigenvalues lead to two values of the index of refraction, that is,

double refraction for each direction of propagation, n. The corresponding

eigenvectors give the two types of polarization associated with the waves

propagated with the velocities corresponding to the two indices ofrefraction.

We shall see when we calculate a quantum mechanically that it is always
Hermitian (with regard to the three axes of space), so the two eigenvalues

* DARWIN, Trans. Cambr. Phil. Soc. 23, 137 (1924);
see also ESMAUCH, Ann. der Phys. 42, 1257 (1913);

OSEEN, ibid. 48, 1 (1915);

BOTHE, ibid. 64, 693 (1921);

LTTNDBLAD, Univ. Arskrift, Upsala, 1920.
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are real and correspond to propagation without absorption. Choosing two

real unit vectors / andm so that /, m, and n form a right-handed coordinate

system, a will appear in the form,

a = anll+ ai2fo+ 512m/4- a^mm.
There are two cases to distinguish: if a12= 512 so the components are all real,

then the eigenvectors are real and we have ordinary double refraction,

whereas if a12^ 512 the eigenvectors are bivectors and the two fundamental

states of polarization are elliptic, or in special cases, circular. It is easy to

show that the two eigenvectors 2-
L and 2% are orthogonal: St^St^Q.

Therefore the two states of polarization are orthogonal as discussed in 84
,

so they have the same ellipticity but one is right and the other left, and the

major axis of one ellipse is the minor axis of the other.

The foregoing discussion applies to the effect ofthe waves scattered by the

molecules if the medium is absolutely homogeneous, in which case N is the

number ofmolecules or atoms in unit volume. Owing to the thermal motions

of the molecules in a gas the medium is not homogeneous; the number of

molecules in any volume v at a given instant fluctuates about the mean value

Nv, where N is calculated by dividing the total number of molecules by the

total volume. The waves scattered by the number of atoms in each volume
element which is in excess of the mean do not interfere in regular fashion;

hence they give rise to scattered light. This, together with some non
coherent parts of the induced moment of unshifted frequency, gives rise to

the Rayleigh scattering. We shall not have occasion to consider in detail

the scattered radiation.

The dispersion and the related double refractions produced by external

fields are of importance in the theory of spectra in that they provide other

methods for measuring line strength than those based directly on emission

or absorption. For their theory we need to calculate the polarizability
tensor a introduced in (1). This is obtained by calculating the perturbation
ofthe states ofthe atom by the field ofthe light wave. Then we calculate the

matrix components (ajm|jP|a J w )p of the electric moment of the atom
with regard to these perturbedstates. Ofthese the component (oyra|P|oyra)p

gives rise to an electric moment which is coherent with the incident light
wave and which is responsible for the various dispersion phenomena. When
the atom is unperturbed by other external fields the energy is independent
of m, and the matrix components (aJm|Pjoc^ml)p also contain terms

which are of the same frequency as the incident light, but these are not

coherent with it and so they contribute an additional amount to the

Rayleigh scattering without contributing to the dispersion.*

* See BEEIT, Rev. Mod. Phys. 5, 106 (1933), for an adequate discussion of this point.
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The calculation is based on a slight modification ofthe perturbation theory

of 82
, required by the fact that the perturbation depends on the time. To a

first approximation the perturbation is

where ^{?e
27rM

}
is the electric vector of the perturbing light wave. This

neglects efiects connected with quadrupole transitions. The state (ocjm)

whose unperturbed eigenfunction is
$(&amp;lt;y.jm)e,

-imfi will to the first order

become

where ^(ctjm) is chosen so that this expression satisfies (5
2
3)

(ir~;4Wi=i[J*^^
\ dt]

L

Here we have written E= hv to represent the frequency of the light, and H
for the unperturbed Hamiltonian. Assuming the expansion

^(ajm) = f S ^(a7mO[(aym&amp;gt;jm)^^^

(8)

we find that this is a solution if

(9)

The matrix component ofF with respect to these perturbed states is, to the

first order,

Using the results just found for ^(ajm) and ^(ajra) this can be written as

(ocjm|F|ocjw) ^{afcjmKe2
*}, (10)

where a(ajm) is the polarizability tensor of the state ajm: therefore

a(ajw) __
_ y naJw l-

p
l

a / m/ )(a//w1 p l

QC^m ) (*j\P\* f~^(* fm \

f\*JmT\~*
LI W -W+ E

+ W -W-E
J&quot;

(11)

The dependence of a on m can be found by using 93 11 for the matrix

components of F. When this is done it is found that the tensor can be ex

pressed conveniently as the sum of three parts: an isotropic part which is a

multiple of 5, a doubly refracting part which is a multiple of S(0) of 644, and

a gyrotropic part which is a multiple of i(ji-ij)* When there is natural

excitation and no external fields, the last two parts vanish when the sum is
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taken over tlie different m values, leaving only the isotropic part. This

shows that in natural excitation, in the absence of external fields, the gas is

optically isotropic. The matrix components occurring in the isotropic part
are proportional to the strengths S(aj,oc/) of the lines, so that finally the

isotropic polarizability oc for natural excitation may be written as

where v(ct!f, aj) = \W(&amp;lt;*. j )
-

W(y,j)]jh. This is the average, not the sum, of

the polarizabilities for the different values of m. The frequency v(&f, ocj) is

positive for those energy levels
W(&amp;lt;x!j ) which are higher than TF(cy ), and

negative for those lower.

The Kramers-Heisenberg dispersion formula is obtained at once when we
use this value of a in (6) to obtain the index of refraction, n= 1 + S. The term

(12) gives the average contribution of atoms in the energy level W(CLJ) so

that the effective average value of a is obtained from the distribution

N(&amp;lt;x.j)
of atoms: I

(13)

In case all the atoms are in the lowest energy level we need here only

one term like (12). In this all the v(oc /, aj) are positive. The dispersion

formula for this case was discovered before quantum mechanics by Laden-

burg* from a correspondence principle argument. The existence of the

negative dispersion terms for atoms in excited states was recognized by
Kramersf and later Kramers and Heisenbergf reachedthe complete formula

including Raman scattering from the correspondence principle. The ex

perimental reality of negative dispersion has been very thoroughly demon

strated by Ladenburg and his associates.

In the discussion of the dispersion formula (12) it is convenient to intro

duce a new set of quantities called the oscillator strengths, as distinguished

from line strengths. This is based on a comparison between any one term

of (12) with the term given by classical theory for dispersion due to an

isotropic harmonic oscillator of charge e, mass
JLC,,

and natural frequency

v(v! a). The equation of motion of such an oscillator when perturbed by the

electric vector is A
f + [2-jT v(a a)]

2r= ~SeMv{}

where the actual motion is 0l{r}. The solution of this equation represents
* LADENBTIRG, Zeits. fur Phys. 4, 451 (1921).

t KRAMERS, Nature, 113, 673 (1924).

J KRAMERS and HEISENBERG, Zeits. fur Phys. 31, 681 (1925).

LADENBURG, Zeits. fur Phys. 48, 15 (1928);
KCXPFEBMANN and LADEKBURG, ibid. 48, 26, 51 (1928);

CARST and LADENBURG, ibid. 48, 192 (1928).
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the sum offree and forced oscillations. For the latter we find that r = i

where 2 ,

so the classical value of the polarizability of the oscillator is

Comparing with (12) we see that the quantum theoretical formula for oc(oy)

be written as ^ (M)

where W , j) -
8
~ ^/ ?

aj) S(qj? g-/)
^ J &amp;gt; JJ

3e*h 2j+l

In other words, each spectral line contributes to the polarizability a term
whose form is that of the contribution from a classical oscillator, multiplied

by a dimensionless quantity f(a
7

/, aj) called the oscillator strength. Like the
Einstein A s and B s 3 the fs are not symmetric in the initial and final states

owing to the occurrence of the factor (2j+ 1)-
1

. From the symmetry of S
and the antisymmetry of ^(a /, cy ) we find that

Using (13) and (14=) it is possible to express the effective polarizability in
terms ofthef5

s as the sum ofcontributions associated with each spectral line :

in which aj refers to the lower energy level of each line and a / to the

higher, and the sum is over all the lines in the spectrum. The negative term
in the brackets is the correction due to the negative dispersion arising from
atoms in excited states.

The oscillator strengths f
( /, aj) satisfy an interesting sum rule which

was discoveredindependently by Thomas and by Kuhn* from consideration
of the dispersion formula from the standpoint of the correspondence prin
ciple. It is a simple consequence of the law of commutation ofp and r and
is important historically in that it was used by Heisenbergf to find this

commutation law in his first paper on matrix mechanics. The rule states
that for a system containing a single electron the sum Sf(a /, aj) is equal to

unity. The proof is very simple. From the commutation law 521 we have

*
THOMAS, Haturwiss. 13, 627 (1925);
KTJHN, Zeits. fiir Phys. 33, 408 (1925).

t HEISENBEEG, Zeits. fiir Pbys. 33, 879 (1925).
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For a single electron in an arbitrary potential field the Hamiltonian is

from which by the commutation law we find that

so that the matrix components ofp in terms of those of r are

(cf.jm\p\a. j m
f

)= -27r^v(cc
/

a)(ajm|rloc
//m /

).

Hence a diagonal matrix component of (p*r T*p) is

4:7Tjji
S Ka

/

a)I(aj?m|r|oc /m )I

2= 3S.*
a ? m&quot;

This is independent ofra and can therefore be summed overm by multiplying

by 2/-fl. Substituting the oscillator strengths f(& } , &amp;lt;xj)
from their

definition in (14) this becomes

Sf(a j ,aj) = l,
a 5

&quot;

which is the required sum rule.

10. Natural shape of absorption lines.

Let us now consider the actual shape ofan absorption line in a gas, taking
account of the finite width of spectral lines as given by 1410. The finite

width arises in the coupling of the atom and the radiation field and so

applies to absorption as well as emission. When we take account of I4IO we
find that the absorption probability varies with a over the natural width of

the line. Measuring a from the centre of the line we may write

for the probability that a quantum between a- and a+du produces a tran

sition in unit time. Then, if p(cr) is essentially constant in the neighbourhood
of the line, the total number of transitions produced by radiation in the

neighbourhood of the central frequency is

b(S,A, 0).

In the ordinary treatment in which we neglect the natural width this total

number of transitions is written p(a) N(B) B(B, A), hence we have

b(J?,4,0) = B(J3,4)/TOp . (2)

The intensity of a light beam is measured by the energy I(a) crossing unit

area normal to the direction ofpropagation in unit time in the wave-number

range da at o\ Since p(a) is the volume density of energy, evidently

JT(a)=c/&amp;gt;(cr).

* Sums of this type, but with v2, v3, and v4 written in place of v(a a), have been evaluated

by Vism, Phys. Rev. 41, 432 (1932).



110 THE THEORY OF RADIATION 104

The &quot;beam goes through, thickness A# in time AOJ/C, so that its diminution in

intensity can be found by multiplying the number of transitions it produces
in this time by the average size of quantum, kv, to give the relation

Hence the intensity after going through a finite thickness x of absorbing
material is __j_

I(a) = V~^&amp;lt;^
2

, (3)

. _. , mi&amp;gt;
.

where =-- - N(B) x.
C 7T(7

The coefficient ofN(B) x in the expression for is an area that is character

istic of the line in question. We shall call it the effective area for absorption

of that line. Then is the number of atoms in the initial level of the absorp
tion process contained in a cylinder whose base has this area and whose

height is the thickness of the absorbing matter.

The amount of energy removed from the incident beam in da at a is

Ifwe are dealing with a small amount ofabsorbing matter, we may calculate

the total absorption by expanding the exponential function, saving only the

first two terms and integrating with respect to o-. This recovers the result

77&amp;lt;7 / or hvB(B,A)N(B)x[c which applies when we ignore the natural

line width.

But if there is a larger amount of absorbing matter, so that ~I or &amp;gt; 1,

we have to calculate
*

Vo f

+

[1
-

e&quot;^w53*] do/a
= I *o /(O W

J 0&amp;gt;

to get the total absorption. The integrand gives the shape of the absorption

line. In Fig. I4 it is plotted for several values of . For large the absorption

becomes essentially complete in the centre of the band and the curve be

comes much broader than the natural breadth. Although the absorption

coefficient becomes very small as we go away from the centre of the line, the

large amount ofmatter present gives rise to appreciable absorption at fairly

large distances from the centre. The absorption is 50 per cent, for

For largevalues of we can estimate the integral by supposing the integrand

equal to unity out to this point and zero beyond. This gives for the total

absorption V 2V/I^2= 2-39l a V.
This is remarkably close to the true asymptotic value.
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Considerations of this kind were first developed by Ladenburg and

Beiche* on the basis of the classical electron theory. They evaluated the

integral in (4) and found

where the J 5

s are Bessel functions. Using the known asymptotic expansions
we have, for &amp;gt; 1,

Adopting any convenient definition for the width of the absorption

line, such as the wave-number interval between points where the absorption

amounts to some fraction of the total intensity, we see that the width varies

as the square root of the active number of atoms in the hue of sight. Out on

the wings
*

of the line, where the absorption is small, we may develop the

Fig. I4 . The natural shape of an absorption line for several values of .

exponential function, retain only the first two terms, and thus find that for

the absorption is given by

Thus the strength at a given point in the wing is directly proportional to

the number of atoms in the line of sight. These results have had important

astrophysical application! to the theory of the Fraunhofer lines in the solar

spectrum, but we cannot go into this interesting topic here.

* LADENBUBG and REICHE, Ann. der Phys. 42, 181 (1913).

f STEWABT, Astrophys. J. 59, 30 (1924);

SCEUTZ, Zeits. fur Astrophys. 1, 300 (1930);
MDTNAEBT and MULDERS, ibid. 2, 165 (1931);

UNSOLD, ibid. 2, 199 (1931).



CHAPTER V

ONE-ELECTRON SPECTRA

The simplest atomic model and the only one for which all details of the

spectrum can be accurately calculated is that ofhydrogen and the hydrogen-
like ions, Hell, Li III, etc. This model consists of a heavy nucleus of charge
Zte and a single electron, interacting principally according to the Coulomb

law. We shall see in later chapters that the spectra of the alkali metals may
be treated by regarding one electron as moving in a central non-Coulomb

field determined by the nucleus and the average effect ofthe other electrons.

In this chapter we treat the hydrogen-like spectra and the alkali spectra,

anticipating for the latter the justification ofthe assumption that these may
to a good approximation be regarded as one-electron spectra.

1. Central-force problem.

We consider the motion of an electron ofmass ju in a central field in which

its potential energy is given by U(r), where r is its distance from the centre

of force. Neglecting electron spin and relativity effects the Hamiltonian for

the electron is

From 834 we see that H commutes with Lx , Ly ,
Lz and

2
,
and therefore 2

and any component, e.g. LZ9 may be taken as constants of the motion. We
look therefore for simultaneous eigenstates ofH,

2 and Lz . The Schrodinger

equation (6
2
2) for this Hamiltonian is

If we express the Laplace operator in polar coordinates and use 4327, this

becomes *2 i a /

The requirement that
&amp;lt;f&amp;gt;

be an eigenstate of I,
2 and Ls determines its depend

ence on 6 and 9 according to 4312, so we may write

(3)

In this case the equation for the radial factor of the eigenfunction becomes

-*

The allowed values of the energy W are the values for which this equation
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possesses solutions which vanish at the origin and remain finite at infinity.

It will be noted that the value of Lz does not occur in the equation for W,

hence each value ofW associated with the quantum number I will be (21 -f 1)-

fold degenerate. (This result follows also from 338 sinceH commutes with JL.)

The equation (4) for the radial eigenfunction is formally that of a one-

dimensional motion under the effective potential energy

the second term corresponding to the effective potential energy ofthe centri

fugal force. Starting with the lowest value ofW determined by this equation

for a particular value of Z, it is customary to distinguish the states by means

of a
f

total
*

quantum number n which has the value I -f 1 for the lowest state

and increases by unity for each higher state, so that n I 1 is the number

of nodes of the radial eigenfunction, not counting the origin as a node.

Also in accordance with custom among spectroseopists we introduce a

letter code for the values of I, according to the scheme

Value of Z: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

Designation: spdfghiklmn o q r t u

The energy levels will be labelled by the quantum numbers n and I according

to the scheme W(ls) 9 W(6d), etc. This scheme arose in connection with the

interpretation of various series of lines in the alkali spectra, known as the

sharp, principal, diffuse, and fundamental series. The quantum, numbers nl

will be said to specify the configuration of the electron.

The preceding discussion has been for a fixed centre of force. Let us now

consider the two-body problem in which the electron moves under the in

fluence of the same field due to a nucleus of mass M. Let X, T, Z be the

coordinates of the centre of mass of the system and x9 y, z the coordinates of

the electron relative to the nucleus. Then, as in classical mechanics, the

kinetic energy of the whole system becomes

where p is the so-called reduced mass. Expressing this in terms ofmomenta

as in classical dynamics and substituting the Schrodinger operators for the

momenta, the Schrodinger equation of the two-body problem becomes

where Ax is the Laplacian with respect to the internal coordinates and A^- is

that with respect to the centroid s coordinates. The variables may be

separated by writing $ as a product ofa function of the internal coordinates

by another function of the centroid s coordinates. The separate Schrodinger
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equation for the internal coordinates is then found to be just (2) with the

reduced mass in place of the electronic mass, while that for the external

coordinates is simply the Schrodinger equation for a free particle of mass

fi+ M. The total energy E breaks up into the sum of the internal energy W
and the energy of translation. The energy of translational motion does not

need to be considered farther as it does not change appreciably during a

radiation process and thus does not affect the line frequency. Hence we may
allow for the finite mass of the nucleus simply by using the reduced mass in

place of the electronic mass in equation (2).

2. Radial functions lor hydrogen.

We shall now consider the radial equation 154 for the Coulomb potential

function U(r) = Ze*/r:

jit
r \

By making the substitutions

Z
this equation takes on the more concise form

a =*

which is recognized as the equation of the confluent hypergeometric
function.* From the form assumed by the equation near p= 00 we see that

the solution which remains finite there contains the factor e~# 2
. An attempt

to solve the equation with a power series in p shows that the solution which

is finite at the origin starts off with p
l+\ This suggests the substitution

which leads to the following equation for/(p):

-/-O. (4)
P / P

If this equation be solved in terms of a power series in
/&amp;gt;,

it will be found that

the series breaks o2 as a polynomial of degree n I lif^isan integer

greater than I. The polynomials obtained in this way belong to the set usually

known as associated Laguerre polynomials. Ifn is not an integer the power
series defines a solution which becomes infinite like e+f* as p -&amp;gt; oo, so the finite

solutions are defined by the requirement that n be integral. In this ease, (2)

gives just the well-known Bohr levels for hydrogen-like atoms:

W ^Z* _ ue4

* WHJTTAKEE and WATSON, A Course of Modern Analysis, Chapter xvi.
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The ordinary Laguerre polynomials may be defined by the equation

Ln(x) = exDn
(x

ne~x), (6)

where D is the symbol for differentiation with regard to x. An equivalent

formis
(*)
=

(&amp;gt;-!)(*). (7)

If the indicated differentiations are actually performed, this becomes

- *~1+ M2(M 1}V--... + (- l)f. (8)

The associated Laguerre polynomial L(x) is defined by

I%(x) =DLn(x). (9)

It is the polynomials so defined that satisfy (4), the solution being

f(P)
= L^(p), (10)

a polynomial of degree n I 1 . An equivalent definition for the associated

Laguerre polynomial is

Pp^^). (11)

Applying either of the definitions we find that the polynomials are given by
the general formula:

From this form they are easily seen to have the following relation to the

hypergeometric function:

Another form of the solution for the radial functions which is due to

Eckart* is useful in some calculations. He showed that to within a norm

alizing factor the radial wave function R(nl)jr is

r1 /d\ n-t~i( / Z\n+1
}

-(S=f:nji(sy M-=) 1

in which z is set equal to Z]na. after the differentiation is performed.

Carrying out the indicated differentiations, it is easily seen that

Tlie Laguerre polynomials may also be studied with the aid of their

generating function, according to the following expansion
xt

*
ECKAET, Phys. R^v. 28, 927 (1926).

8-2



116 ONE-ELECTEOK SPECTEA

TMs is the relation used by Sckrodinger* for calculating certain integrals

involving Laguerre polynomials.

32 36 40

Fig. 1 B
, Radial probability distribution a R\nl) for several of the lowest levels in

hydrogen. (Abscissa is the radius in atomic units.)

In order to normalize the radial functions we need the result

(17)

which is readily obtained from the generating function or from Eckart s

*
SCHE6DHJGEK, Ann. der Phys. 80, 485 (1926).
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formula. Therefore the final formula for the normalized radial function

which is normaKzed in the sense I R\nl) dr=l. Several of these functions
-&amp;gt;o

are given explicitly in Table I 5
. The probability of finding the electron in

dr at r is R2
(nT) dr; this distribution function is plotted in Fig. 1

s for some of

the lowest states.

TABLE 1s . Normalized radial eigenfunctions for =!.*

- = - = -- =
3V3

*
81V30

- *r
64V 5

2V6 768V35

The average values of various powers of r for the hydrogenic wave
functions are given in Table 25

.f

TABLE 2s.

a-*,
o

2

4
^i[63w*

- 357i2(2Z
2

-j- 2Z - 3) + 51(1 + 1)(3Z
2 + 3Z - 10) + 12]

5
72

-2

-3
*

* In this table r is measured in atomic units. The general eigenfunctions for any Z and

arbitrary length unit are obtained by multiplying the functions of this table by Vz/a. and

replacing r by Zr/a*
f The average values of r~5 and r~6 may be found in VAN VLECK, Proc. Koy. Soc. A143,

679 (1934).



118 COTE-ELECTRON SPECTRA 35

3. The relativity correction.*

We shallnow investigate the effect ofthe relativistic variation ofmasswith

velocity in the central-force problem, particularly in the case of hydrogen.

To obtain the wave equation we take the relativistic expressions for the

Hamiltonian (total energy)

H=^j==-l] + U(r) 9 (jS=^/c) (1)

and for the momenta

IJLX u,y pi /ov=

where ft is the rest mass and v the velocity of the electron. Then

so that
&amp;gt;

= 1 1 -f -o-oj

!

V] _ #2 V AL
2C2

Hence JE? = ac2

The third and succeeding terms of this expression are very small (in atomic

units, p~l, c==137, jLt=l, cf. Appendix) compared to the second and

hence may safely be regarded as a perturbation. We shall keep only the

third term.

We shall thus solve the equation
i \

= E$9 (4)

under the assumption that the ift*s
and energies do not differ much from those

of the non-relativistic equation

(5)

which we have considered hitherto. Under this assumption we may set

Now from (5)
--
ip

* See the sketch in 5 of Dirac s more rigorous treatment.
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since p2 commutes with (W U) we may apply p* again to obtain

or to our approximation

Hence the relativistic central-force equation becomes

(7)

Just as in I5 we may take this
iff
to be an eigenstate of angular momentum

with the quantum numbers m
t
and Z, and obtain the radial equation

In the case of hydrogen and hydrogen-like ions we may solve this

rigorously. We set U-~ Ze*/r to obtain

where a denotes the fine structure constant e2/#c= 1/137-3. We see that for

c~&amp;gt;oo this equation reduces to the equation 25 1, and that it may be dis

cussed in the same way. For simplicity we rewrite the above equation in the

&amp;lt;,,

Near r= oo
s
the solutions of this become asymptotically

of which the solution with the minus sign remains finite for the energies in

which we are interested. At the origin if we attempt to find a power series

solution starting as r^, we find the indicial equation

whence r=
Of these it is y+ which gives our previous solutions in the limit c-&amp;gt;oo.

Hence we proceed to find a solution of the form

nfXr*. (11)
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TMs leads to the following recursion formula for the coefficients bk :

_
The series lLbkr

k determined in this way converges as e l^~A r
except for the

particular values of E which cause it to terminate as a finite polynomial.

Setting the coefficient 6m= gives the value ofE which gives a polynomial
of degree $ in place of the infinite series. This value of E is found to satisfy

~*
_1. (13)

Ifwe take the negative sign for the square root in this expression we get a

set of energy levels just greater than 2fiC
2

, and converging to a limit at

that point, with a continuous spectrum below E= 2ju,c
2

. Such states of

negative kinetic energy occur of necessity in any relativistic theory, but here

we may just ignore them by falling back on our treatment ofthe relativistic

variation of mass as a mere perturbation on the ordinary energy levels to

which (13) reduce ifwe take the positive square root and let c -&amp;gt; oo.

If we expand (13) in powers of a2,
we obtain, to terms in a4 :

or, in wave numbers

E RZ2
( &amp;lt;x?Z* n

4. Spin-orbit interaction.

We shall now complete the picture of the fine structure in the absence of

external fields by considering the effect ofthe electron spin. The effect of the

spin in one-electron spectra arises from the interaction of the magnetic
moment ofthe electron with the effective magnetic field set up by its motion
around the nucleus. Here, as in all considerations involving electron spin,

we must in the last analysis choose the term in the Hamiltonian which repre
sents this interaction to agree with experiment. From the picture of an
electron as a spinning top Thomas* and Frenkelf have obtained a formula
which gives experimental agreement, and is of the sort occurring in Dirae s

theory of the electron, 55
. Their result for the spin-orbit interaction energy

of an electron in a central field with potential U(r) is

where L is the orbital and S the spin angular momentum.
* THOMAS, Nature, 117, 514 (1926).

t FBENKEL, Zeits. fur Phys. 37, 243 (1926).
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We must then consider the energy levels and eigenfunctions for the

Hamiltonian HQ+HZ
, where HQ is the (relativistic or non-relativistic)

Hamiltonian without spin interaction. We shall use a representation in

which HQ
,
L2

, S2
,
LX9 and Sz are diagonal. The eigenvalues of fi are in

dependent of ms ,
the z-component of spin (this follows from 338 since #

commutes with S), so we may form an eigenfunction characterized by

jjo =wnl , 8, I, ms) and ml merely by multiplying 1
53 by 8(&amp;lt;r,

m8) as in 532:

m^ (2)

The matrix components ofH1 in this scheme are

(nlm8
m

l\H
I
\ril

/m
s
m

l )

=
Jo

f

2 &quot;

f

W

Jo Jo

The expression in braces is just the matrix component of L*S which was

evaluated in 733. This matrix component contains a factor S(Z,Z
/

)- Hence

we can write*

f
j o

(3)

This shows that our matrix is rigorously diagonal with respect to L

Although it is not diagonal with regard to n, the perturbation theory shows

that the non-diagonal elements in which n s differ have a negligible effect

on the energies since states of the same I but different n have large energy

differences. This shows that the first approximation of the perturbation

theory in which these elements are neglected will be a good approximation.

On the other hand if it had turned out that there were matrix components

* This method of calculation is given to show the relation between the Schrodinger and the

matrix type of calculation. We should ordinarily say

(n I m, mA&r) L S\n
f
I mrf) = S

m
(* * , ilMK V

&amp;lt;OK l
&quot; m &quot;

rf\L*S\* V m
t &amp;lt;).

,*Z&quot;7?i*7n
I

Since r2 commutes with L and 5, the first factor in the summand contains ^(Im8m t ; Z*wmJ); by

733 the second factor contains S(T, T). Hence the whole sum reduces to

$(l, I
) (n I ms wiilf(r)K I ms m^(n I m a

which is seen to equal (3).
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joining states of different I and the same n this approximation would have
been very poor, at least for hydrogen, where these states lie very close

together.

We thus consider the diagonalization of that portion of the matrix ofH
which corresponds to a given configuration nl. With the notation

&-f (4)
o

this portion of the matrix ofH may be written as

W^n-^^nlm.m^L Slnlm^ll. (5)*

To our approximation, then, the eigenstates of H are not only eigenstates
of 2 and S2 with the values l(l+l)Jfi and p2

, but also eigenstates of

JL*5; hence they are eigenstates ofJ2= (S-h)2
.f From 634 we see that the

quantum numberj [J2
=j(j+ 1) W\ may have either of the values I + \ 9 l- J,

except for l=Q9 when we obtain onlyJ= J. Since

(6)

Hence all except 5 configurations split into two levels, corresponding to

j= l + fa andJ= Z
-|.

Each of these levels is still (7 + 1) -fold degenerate,

corresponding to the 2/+1 values of m[Js =mfi,]. Since aU reasonable

potential functions are increasing functions of r, the parameters nl are

essentially positive. Therefore the level of the higherj lies above that of the

lower; the centre of gravity of the two levels remains at Wnl if in deter

mining the centre of gravity the levels are weighted according to their

degeneracy.
The (one or) two levels into which each configuration is split are

together said to constitute a doublet term. The terms are designated as

2/S ( doublet S*),
2
P,

2
D, ... according to the I value of the configuration

from which they arise. The separate levels are designated by adding the
value ofj as a subscript, thus *#

t ;

2

P^ }

2P
j;

2D
|3 2^. etc The quantum

number n or the configuration label nl is frequently prefixed to these

symbols, and to specify an individual state the value of m is given as

a superscript, thus 2 2
p| or 2p

2P^.
2 2

* ^z represents the matrix whose diagonal elements have the constant value Wnl and whose
non-diagonal elements vanish, i.e. Wnl times the unit matrix.

t Not only to this approximation, but in general, are the eigenstates ofH eigenstates ofI2
, S2

,

and J\ since H commutes with these three ohservables. The only non-rigorous quantum number
is the quantum number n.
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The eigen-i/r s going with these states are given by 1436 and Table I
3

.

(8a)

#*-) = fliw-iO),
and for I &amp;gt;

(8b)

where the &amp;lt; s on the right are those of (2), labelled by the quantum numbers

nlms mi. This transformation is of importance in many-electron spectra,

where we shall speak of it as the transformation from the nlms rnl
scheme to

the nljm scheme. In obtaining (8) we have correlated $ with J1? I with J2 ,

altering the phases in Table I3 according to 1437; it is easily verified that the

non-diagonal elements (nl*L^\Sz\nl*L^) are positive as in 1C3 . TJiis

correlation of S, L} J to Jt , J2 , J respectively we shall adopt as standard.

For S levels one must not conclude from (7) that the displacement due to

spin is zero since Z= 3 for in this case the integral diverges at the origin.

This follows from the fact that near the origin the screening of the orbital

electrons must become zero, so that U(r) must represent the full potential

due to a charge Ze, and hence have the form -
(Ze&quot;

2
/r) 4- const. With such a

potential R starts as r*+1
, just as in hydrogen, so that the integrand of (4)

becomes essentially 1/r for small r when 1= 0. Hence the spin displacement
of an S level is essentially indeterminate in this calculation. We shall return

to this point in the next section.

In the case of the Coulomb potential, U(r) = e*/r, the value of t,nl is

given at once by Table 25 :

3X&amp;gt;2/r R(

With this value of
,
the two energy levels given by the spin-orbit inter

action are nrrn nrvn
n

. -+

nH - F &quot;

It will be noticed that the spin-orbit interaction gives a correction of the

same order of magnitude as the relativity correction 35
15; using the value
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ofWnlthere foundwe obtain for the fine-structure levels ofthe hydrogen-like

atoms the formulas

l j

2D 2F 2
6

-J 3/2

-tf i
/2

=i
*3

I 3

C5

Fig. 2P. Fine structure of hydrogen-like energy levels.

These formulas show that the two levels having the same j value but
different values of I have the same wave number

&amp;lt;n Q\71 o \

er= 1 +

This system oflevels, which we have obtained by perturbation theory, is the

same to this order ofaccuracy as that given by a rigorous solution of Dirac s

relativistic equations ( 55) and agrees with experiment (
75

). The relativistic-

spin displacements Ra224 4n
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of these levels are shown in Fig. 25 for ?i= 1, ..., 5, using Roc2J
4
/4?&

4 as a unit

in each. case. The relativistic displacements given by 3515 are indicated by
the broken lines; each of these splits to form a spin doublet as in (10).

Because of the occurrence of n~4 in the unit, the actual splitting decreases

very rapidly as n increases.

5. Sketch of the relativistic theory.

Dirac* has developed a theory of the electron in an electromagnetic field

which satisfies the relativistic requirement of invariance under a Lorentz

transformation. The characteristic feature of it is that the Hamiltonian

operator is made linear in the momenta in order that the operators d/dx

be on an equal footing with the djdt which occurs linearly in the funda

mental equation 523.

In order to factorize the non-relativistic quadratic Hamiltonian into two
linear factors it is found necessary to introduce some new non-commuting
observables. It turns out that this introduces changes in the theory which

are akin to the electron spin. In other words, the spin is not introduced

ad hoc but is a consequence of the relativity requirements. If the energy
levels W are reckoned to include the rest energy /^c

2 of the electron, besides

the usual energy levels in the neighbourhood of + /*e
2 the theory also gives

negative levels in the neighbourhood of
/z,c

2
. This was for some time

regarded as a serious difficulty for the theory, but now it appears likely that

these are connected with the positive electron or positron recently dig-

covered by Anderson.f
In this section we shall give a brief account of the one-electron atom pro

blem as it appears in Dime s theory. The wave equation for an electron of

charge e in an electromagnetic field whose potentials are 9, A is

(1)

which in the case of a central field, with no magnetic field, becomes

(2)

In these equations a and the three components of the vector $ are real

observables whose squares are equal to unity and which anticommute with

each other} and commute with the positional coordinates and momenta.

*
DIBAC, Quantum Mechanics, Chapter xn. See also a report by RUMEE, Pkys. Zeits. 32, 601

(1931).

f A205EBSOH, Piiys. Rev, 43, 491 (1933);
BLACKETT and OCHIAMNI, Proe. Roy. Soc. A139, 699 (1933).

} Ihat is, aj8z -f jSxa=0, &&,+&,&=&amp;lt;), etc.
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Each quantity has the allowed values 1. The quantity a we shall call the

aspect of the electron. In problems in which relativistic effects are small the

first term in (2) is the largest; hence the allowed energy levels are near to

the allowed values of a/ttc
2

,
that is, near to pc

2 as stated before. The
vector p is the quantum analogue of the ratio of the velocity of the electron

to the velocity of light, as Breit* has shown.

The states ^ for this problem are required, in order that we may find four

anticommuting matrices, to have four component functions of position.

(This is analogous to our use in 53 of ^ s with two component functions of

position to allow for the spin degeneracy.) Hence a and p are represented

by fourth-order matrices acting on the coordinates which distinguish the

four components of ^ 5 and these we write as a matrix of one column and

four rows. We maywork with a representation in which oc is diagonal and in

which a and p have the forms

It follows directly from the properties of the components of p that the

vector p x p satisfies the commutation rule

By comparison of this with 133 we see that p x p is a constant times an

angular momentum. In fact, the components of this vector are proportional
to the components of the spin vector of 53 written twice over:

that is,

(4)

! }

J

J

t

-Jt

\i

000
it

-i*

J o

o -i

It may be shown (Dirac, 72) that because of the form of the Hamiltonian

(1) the electron must be considered as having a spin angular momentum S
&

and a magnetic moment --S, exactly the values postulated by Uhlenbeck
flC

and Goudsmit. Sz is diagonal in the scheme we are using. Hence we may say
that the first component of

iff
refers to a =

1, Sz
=m/i^ -f JS; the second

component to a = l,ms
= ~^; the third to a = 1, ms

= +i; and the fourth

to &amp;lt;x

= 1
3
m= .

*
BEETT, Proc. Nat. Acad. Sci. 14, 553 (1928).



55 SKETCH OF THE BELATIVISTIC THEORY 127

Dirac s Hamiltonian (2) commutes withJ=1+ S, so we may introduce a

set of states labelled by j and m. For a definite value ofj and m there are

two possible values of a and two possible values of I, namely j\. The

labelling by (jmZa )
determines the state except for a function of the

radius. We denote such a state by xtfmZa ).
Tlie fornls of these states are

given by 458. For a = 1 the third and fourth components ofx vanish and for

a = - 1 the first and second components vanish. The non-vanishing com

ponents of are

y
^ w-tm-t)

(5)

m Thesewhere
&amp;lt;(Z m^) is written for the spherical harmonic

2
states may be regarded as labelled by I or by pi*

5. They are not suitable in

this form to be eigen-^ s of energy since JL
2 does not commute with the

Hamiltonian. The quantity

whose eigenvalues we denote by k, does commute with the Hamiltonian and

so its eigenvalues may serve as quantum numbers. The allowed values of k

are (j+ i) and the states labelled by (jmfcot ) which we shall denote by

ijt(jmk&amp;lt;x. ), are related to the x s by

It is convenient now to transform (2) by introducing the operator

g = r *p, where rQ =rjr. Since /}*== 1 the second term becomes

SAL-S\

The last form here follows from the fact that the dyad pp= 3--^

On introducing the Schrodinger operator (
-ifi grad) for p, this becomes
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Let us now consider the action of /?r on *fs(jm & * )
In the initial representa

tion ]3r has the form

cos&amp;lt;9 sin0e-*?

sin#e*? cos#

sin0e-*

--COS0

with the aid of 4321 we readily find that

fir 4t(jmkcx. )
= $(jmk-(x, ). (9)

The eigen-^ of the Hamiltonian going with definite values of &, j, m will

be a linear combination of ifj(jmk^-l) and tff(jmk-l) which we write in

the form j?/r\ iGM
I). (10)

Substituting this in (2) and using (8) and (9) we find the equations which

determine F(r) and G(r):

These equations may be discussed in the usual way for U(r) = Ze2
[r by

and seeking the conditions for polynomial solutions for f(r) and g(r). The

details are given in Dirac ( 74).*

The allowed discrete energy values found in this way are

(ii)

where a=e2
/Sc, the fine structure constant introduced in 359. In this equa

tion the allowed values of s are

5= 0,1,2,3,... for 4&amp;lt;1

19 Q ff\T&amp;gt; 1&amp;gt; &quot;*&amp;gt; 1
, z, o, * . . ior K & i .

The relation of the quantum number k to the ordinary doublet notation is

given by the scheme:

i= -11-22 -3 ...

The levels which lie close together are those for a definite value of the total

quantum number
n=s+\k\. (14)

* See also GOBDON, Zeits. fur Phys. 48, 11 (1928);

DABWIN, Proc. Roy. Soc. A118, 654 (1928).
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The lack ofsymmetry of (12) with regard to the sign of k is just such that for

a given value of n we have the same doublets occurring as in the non-

relativistic theory, e.g. for n= 3 we may have

$ = 2
3 k= I, giving

2
#j,

2
Pj,

I,fc=2, giving
2
Pf,

2Df ,

0,i= -3, giving
2D

f ,

so that the lack of the allowed value s= with positive k is just what is

needed to prevent the appearance of half of the 2F term and so preserve the

structural similarity with the non-relativistic theory, (11) gives, to terms in

ot
4
, the same system of levels as we found in 45

12; (13) and (14) show that

levels of the same n and j have rigorously the same energy.

For small values of Z the energy levels (11) are close to H~/^c
2

. In the

i/r
s belonging to these levels, the third and fourth components, which

refer to oc = 1, are large compared to the other two, which refer to

states in which oc = + 1. In other words, the aspect is an almost exact

quantum number. Besides the discrete levels there is an allowed con

tinuous spectrum for W &amp;gt; -f /zc
2 and for W &amp;lt; ~/zc

2
. We shall not have

any use for the exact radial functions and so do not work out the detailed

expressions.

It is instructive to discuss the Dirac equation for the central-field problem

(2) in a way which exhibits the connection with the relativistic and spin-

orbit effects as discussed in 35 and 45
. Replacing W by E + ^o

2
, (2) becomes

1
c*_ cp .

a
j| +m01 cOjl

in which the dependence of a and p on the values ofa is shown explicitly in

terms of a vector whose components are (2/#) times the spin matrices of

531. The first equation of the pair implies

c

which may be used to eliminate
ifr+ from the other equation of the pair to

obtain as the equation for *//_

1

--o/(r) f_ + U(r) $_ = .Et/L. (15)

in which H l + :

7-ZT1-

J

In actual atoms (E U) &amp;lt; 2/xc
2
everywhere except very close to the nucleus,

so f(r)~ 1. If we simply treat f(r) as exactly equal to 1, ^_ satisfies the

Schrodinger equation for the non-relativistic problem without spin-orbit

interaction, since
(P*&amp;lt;*)

2=P*- However, if we save the first term in the

cs 9
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development of /(r) we get both the spin-orbit interaction and the first

approximation to the relativity correction.

The first term of this becomes simply /(r) p^ifi. By a simple application of

525, we find that
fif (r)

so the second term is

i r

Now to the first approximation

Hence the equation for $_ is

1
i rr, v ,

1 A/ ! 13^
* ~ * ~

3r

(16)

The first two terms constitute the simple non-spin non-relativistic Hamil-

tonian, the third is the first approximation to the effect of variable mass as

considered in 35 5 the fourth is the spin-orbit term as considered in 45
. The

last term is peculiar to the Dirac theory and does not have a simple classical

interpretation. This last term, in the case of a Coulomb field, U= -Zez
jr

gives rise to the following change in the energy by a first-order perturbation

calculation:

since B(OO) = 0. (Here B(r)
is the whole radial factor R(nl)jr of the wave

function.) Hence this term contributes nothing except to S terms, for they
are the only ones for which n(0) is not zero. Using the value of the radial

factor from 25 18, the amount contributed to the ns energy by this term is

Vc%3a3
~

2 n*

which is the value of the spin-orbit correction of S terms as given in 4510

ifwe suppose those formulas to hold without change for S terms . On the other

hand, as already remarked, the term in I&amp;gt;S becomes indeterminate for S
f 1

terms since the integral
- U (r)ijt*dv diverges and L S vanishes. We now

see that that is simply a consequence of the approximation procedure which

implies (E U) &amp;lt;2ju,c

2
. Near the nucleus we can have (E U) &amp;gt; 2/zc

2 and
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for S states this is important because of the relatively large probability

of the electron s being close to the nucleus in these states. Ifwe avoid using

the expansion off(r) we see that

so near the nucleus the quantity / (r) approaches a finite limit, hence the

radial integral -f (r) B2dr is really finite, so this term vanishes on account

ofthe vanishing of L*S. Hence we have shown that the approximation pro
cedure for Dirac s equations when properly applied leads to 451I even for

the energy of the S terms. It is of some interest to note that Darwin had

discovered (16) prior to the work of Dirac but without the term in difj]dr;

as a result his equations gave the hydrogen levels correctly except in regard
to the S levels.

6. Intensities in hydrogen.

In order to calculate the transition probabilities or the line strengths in

the hydrogen spectrum we need the matrix components of the electric

moment, P= er. Since the results of 93 and 1 1 3 are applicable to P3 all

of the hydrogenic intensities are expressible in terms of the integrals

rJ o
rK(nl)R(n l-~l)dr.

The evaluation ofthese integrals is rather difficult. Schrodinger* calculated

them by use ofthe generating function for the Laguerre polynomials. Other

simpler calculations have been made by Epstein, Eckart, and Gordonf .

BatemanJ has generalized Epstein s result. According to Gordon the in

tegral above is equal to

n- rii)*
-*

l(n+ 1) ! (n + 1- 1
)

1

-1)! V (
w _Z-l)!(rc -Z)!4(2Z-1)! (
w _Z-l)!(rc -Z)! (n +

(1)

in which the F s are hypergeometric functions and nr and nr are the radial

quantum numbers n Z 1, and n I respectively.

Special cases of the formula have been written out and simplified, and

numerical values of the integrals have been calculated by several persons,

* SCHEODINGEE, Ann. der Phys. 79, 361 (1926).

f EPSTEIN, Proc. Nat. Acad. Sci, 12, 629 (1926);

ECKABT, Phys. Rev. 28, 927 (1926);

GOBDOK, Ann. der Phys. 2, 1031 (1929).

f BATEMAN, Partial Differential Equations, Cambridge University Press, p. 453.

9-2
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most fully by Kupper.* In Table 35 we give some of the most important
formulas for special series and in Table 45 numerical values for the most

important values of the quantum numbers, the latter being based on Kup-
per s work as revised by Bethe.f The expression (1) is not applicable for

n = n. In this case the integral is easily found to have the value

J
%ann*-l*. (2)

o

This integral, of course, does not occur in the intensity problem in hydrogen,
but is important in the Stark effect (Chapter xvn).

Let us now consider the strengths of the lines in the fine structure of

hydrogen.} We could go at this directly by calculating the matrix com

ponents from the eigenfunctions (4
5
8): this would provide ample exercise in

calculation of matrix components. But it is more instructive to work them

out as an application of the general results of Chapter m. In applying 1 13

we identifyJ^ with the electron spin, soj^= f ,
andJF2 with the orbital angular

momentum, so jz= I. The strengths of the lines n 1
2
L^ -&amp;gt;n ll 2

(L l)^/
are

given by 745 in terms of the quantities (nl
z
Lj\P\n l 1 2

(I/ 1)^). The

dependence of these on f and,; is given in 1138, where they are expressed

in terms of the (nl\P\ril 1). According to the discussion just following
1138, this quantity is really independent of the spin and so, as in 113

9, we

may express it in terms of the nlm8ml
scheme of states in which the spin

and orbital angular momenta are not coupled. Since Pz
= er cos# we have

(nlm$ m^Pz\n
fll m8 m^

= -e \r R(n 1) R(n
r

1-1} dr foos0
Jo Jo

Using 432I, we integrate over 9 to obtain

c r
(nlmsmi\Pg\n l lmgraj)= -== rR(nl)R(rill)dr*

V4?2 l J o

Similarly (n Im
s
m

t \

Pz\n lm
sm^ = 0,

so for a non-vanishing component I must change by one unit. Using 93 1 1, we

hence, finally,

(3)
iJo

* KDPPEK, Arm. der Phys. 86, 511 (1928);

SUGIUEA, Jour, de Phys. 8, 113 (1927);

SLACK, Phjs. Rev. 31, 527 (1928);
^IAXWELL, Phys. Rev. 38, 1664 (1931).

t BETHE, Handbuch der Physik 24/1, 2&amp;lt;* ed., 442 (1933).

j SOMMEEFELD and UNSOLD, Zeits. fiir Phys. 36, 259; 38, 237 (1926);

BECHERT, Ann. der Phys. 6, 700 (1930);
SAHA and BA^EEJI, Zeits. fur Phys. 68, 704 (1931).
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The quantities occurring in 745 are thus completely expressed in terms of

the integrals over the radial eigenfunetions.

The calculations may be exemplified by a detailed consideration of the

line strengths in the fine structure ofHa ,
the ensemble of the n~ 3-&amp;gt;^= 2

r- r* -*

TABLE 3s. Values of\ I r E(n 1} R(n I- 1) dr in atomic units for nf^ n.
L/o J

nl J-l

np

nd

Is

2s

3*

4s

5s

U
U
U

283 ?t
2 -

27)
2
(n

w -f S)-

-
4){n

-
3)

3n-9
{

2 -
4}{%

2 -
9)(n

-
4)

2n~10
(7i

TABLE 45
. Fofees of (re 1) R(n I- 1) dr in atomic units.

J
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transitions. TMs is made up of three doublets
,
3 2

P-&amp;gt;2
2
$, 3 2

Z}-&amp;gt;2
2P and

3 2$-&amp;gt; 2 2P. Using 11 38 we have

(3
2
Df:P:2

2
P|) =

(3
2
Df:P:2

2
Pf)

=

(3
2
D|:P:2

62a2 22238
From Table 35 and (3), (ScZjPjSj?)

2= ==-
;

J.O O

hence from 745 we find for the strengths of the lines,

(a) S(3
2

D&amp;gt;-&amp;gt;2

2
P|) = 9.224375-1%2a2 (6912)

(b) S(3
2
Df-&amp;gt;2

2Pf)=L ( 768)

(c) S(3
2
D|-&amp;gt;2

2
P^)

= 5. . (3840)

In the same way, (d) 8(3
2
Pf~&amp;gt;2

2
j)
= 2.221355~12e2a2

(1 600) (4)

(e) 8(3
2
Pj-^2

2
$j)

= L ( 800)

(f) 8(3
2
5j^2

2
Pj)= 1.216375-12e2a2

( 75)

(g) S(3
2

j-&amp;gt;2

2
Pf) = 2. .

( 150)

It will be observed that the relative strengths ofthe lines in the same doublet

bear simple integral ratios, 9:1:5 and 2:1. This is a special case of a general

result for multiplets discussed fully in 2*. The relative strengths of the

different doublets are not so simple since these involve different radial in

tegrals. The figures in parentheses at the right in this table give the relative

strength of each Iine 3 the common factor being 216365~14e2a2
.

We next consider the theoretical values of the Einstein A transition

probabilities. For a particular line these are expressed in terms of the

strengths by 7*3. It is convenient to express a with the Bydberg constant as

unit, and the strengths in atomic units, e2a2
. Then the numerical coefficient

in 743 becomes ^4^402
- ega2= JaV-

1= 2-662 x 109
sec&quot;

1
, (5)

where oc is the fine-structure constant and r the atomic time unit (see

Appendix). The absolute values of the transition probabilities involved in

the first Balmer line are therefore

(a) A(3
2IV2 2

P|) = 0-643 x 108 sec&quot;
1

(b) A(3
2
D|-^2

2
P|) = 0- 107

(c) A(3
2
Df-&amp;gt;2

2
P|)= 0-536

(d) A(3
2
P|-&amp;gt;2

2#) = 0-223 (6)

(e) A(3
2
P|-&amp;gt;2

2
#j) = 0-223

(f) A(3
2
/5j-&amp;gt;2

2
P|) = 0-021

(g) A(3
2

j-*2
2
Pf) = 0-042.
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The values illustrate several important properties of theA s. The sum ofthe

two transition probabilities from 2
D| is equal to the single transition pro

bability from 2
J5f . This is a general result true in more complex spectra

(
29

). The two transition probabilities in 2P- 2$ are equal, but the intensity

ratio of the two lines is 2: 1 because the A ;

s have to be multiplied by the

statistical weights of the initial levels to give intensities. On the other hand,

for 2
$-&amp;gt;

2P the ratio 2: 1 appears in the transition probabilities themselves,

so that in both cases the intensity ratio is 2: 1 although in the first case it is

e due to a factor in the statistical weights while in the second it is due to a

factor in the transition probabilities. The quantities (2/4- 1)A, which are

proportional to the strengths, are thus symmetrical with regard to initial

and final states, while the A s are not.

Suppose we have an experimental arrangement whereby at 2=0 equal

numbers of atoms are put into each of the 18 states belonging to n = 3 and

that the atoms are not subject to any external disturbance. Then the relative

intensity of the different doublets would depend on the time after the

excitation at which the observation is made. The number of atoms in any
levelA after time twould be reducedbythe factor e~k^

,
where JcA= SA(-4, B) ,

B
the sum being taken over all of the levels B of energy lower than A. In the

particular case ofthe first Balmer line, the 3s andM states can only go to 2p,

but 3p can go to Is as well as 25. We may calculate that

A(3
2P~I 2

j)
= 1-64 x 108 sec-1

for either 3 2
Pf or 3 2

Pj , and so the mean lives [the reciprocals of the total

transition probabilities kA *=k(nl)] of each level of the three initial con

figurations have the values

Configuxation Mean life

3a 16-0 xlO-8 sec

3j? 0-54 x 1G~8 sec

3&amp;lt;2 l-o6xlO~8 sec

Since the mean lives of the two component levels of 2P and 2
Z&amp;gt; are equal

respectively, the relative intensity ofthe lines originating from them will not

change with time. But the relative intensity ofthe lines originating in levels

of different L value does change with. time. The 3 2$-2 2P will be emitted

for a much longer time than the others on account of the greater lives of

their initial states.

Such an experiment has never been performed. The actual studies of the

relative intensity of the lines are made with an electrical discharge where

the excitation and emission reach a steady state. The atoms are subject to

disturbing electric fields and to collisions which tend to produce a mobile
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equilibrium between the states of differing I and the same n. The result is

that when the disturbance is sufficiently great all of the states of the same n
have the same mean life, corresponding to a total transition probability

k(n) which is a weighted average of the individual total transition

probabilities:

TABLE 5s, Transition probabilities and mean lives for hydrog&n,.

* This is
^ 2 A(y -&amp;gt; n Z j ), a quantity which is independent of the value ofj.
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In Table 55 some of the important values of the transition probabilities

for hydrogen are given together with the mean lives ofthe individual states,

and in Table 65 are given the average mean lives for several values of n. The

discussion of the experimental results of intensity studies in hydrogen is

taken up in the next section.

TABLE 65. Average mean life lf&(n).

7. Experimental results lor hydrogenic spectra.

Letus considerbrieflythe relation oftheforegoing theoretical results tothe

experimental data. We have found in 25 that the energy levels in hydro-

genie atoms are given by

where
/x,

is the reduced mass (
I 5

). In spectroscopy we are concerned directly

with the wave-numbers of the lines which are obtained as the differences of

the term values p__#2 p*

R ^H (}\TT
~ T^^ \

A /

The universal constant RH occurring in this expression is known as the

Eydberg constant for hydrogen. The quantity obtained by using the

reduced mass of the electron with tespect to any other nucleus is known
as the Rydberg constant for that atom and we write R^ (or R) for

the Rydberg constant obtained by using the electronic mass in this

formula.

The spectrum of hydrogen divides itself naturally into a number of series

of
*

lines
,
each series being the set of lines having a common final n value:

Wave-lengths (.Angstroms)

Final

1

2

3

4

Name

Lyman
Balmer
Pascken
Brackett

The Lyman series lies deep in the ultra-violet, the Balmer series is the pro

minent feature of the visible hydrogen spectrum, the other two are in the

infra-red.
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The Rydberg constant is one of the best known atomic constants. A
critical study of all the data made by Birge* led him to adopt the values

RH = 109677-759 0-05 em.-1

RHe = 109722-403 0-05

Rco =109737-42 0-06 .

The smallness of the difference between RH and RHe means that some Hell
lines are very close to certain HI lines. Thus for the first Balmer line, Ha ,

=: RH I_-_1

and close to it, in the Hell spectrum, is

1 1

By making an accurate measure of the separation of these lines and taking
the ratio of the nuclear masses as known from the chemical atomic-weight

determinations, it is possible to measure the mass of the proton in atomic

units, that is, the ratio of its mass to that ofthe electron. The most accurate

study of this kind has been made by Houstonf who finds

JfH//t= 1838-2 1-8.

Taking this in combination with the Faraday constant in electrolysis, the

value of
e/jLc

for the electron becomes

e//Lt
= (1-7602 0-0018) x 107 EMIT.

This is in good agreement with the recent precision measurements on free

electrons in deflecting fields by Perry and Chaffee ? and Kirchner.J Thus the

theoretical effect of the finite mass of the nucleus is fully verified. This effect

was the means used in the discovery of the hydrogen, isotope, deuterium 5 by
Urey.
The relativity-spin structure for hydrogen and Hell is very fine, the

distance of the extreme components of the nth energy level being

according to 4512. For the final states of the Balmer series in hydrogen

Aa= 0-365 cm-1
,

while the states ofn= 4 in ionizedhelium have a splitting three times as great.
Since the higher levels show a much smaller splitting, the observed pattern
in a Balmer line is that of two close groups of lines with this separation.

* BIBGE, Rev. Mod. Phys. 1, 1 (1929).

f HOUSTON, Phys. Rev. 3D, 608 (1927).

j PEHRY and CHASYEE, Phys. Rev. 36, 904 (1930);
KracHNER, Ann. der Phys. 8, 975 (1931); 12, 503 (1932).
UBEY, BEICKWEDDE and MUBPHY, Phys. Rev. 40, 1, 464 (1932); J. Chem. Phys. 1, 512 (1933).
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Sommerfeld and Unsold* have discussed the modern interpretation of the

fine structure for several lines. We confine our attention to Ha . The theo

retical pattern for this line is shown in Fig. 35, where the ordinates are

proportional to the relative intensities of the lines as calculated in the

preceding section.

The broadening of the lines by the Boppler effect due to the thermal

velocities of the atoms in the source is considerable, so the experiments are

performed with the discharge tube immersed in liquid air. According to the

t
^

Pig. 3s . Theoretical fine structure ofHa .

theory of the Doppler effect, an atom emitting wave-*mmber o- if moving
toward the observer with speed u will appear to emit radiation of wave-

number a where

If the distribution of velocities is according to Maxwell s law for absolute

temperature T, the fraction of all atoms whose speed toward any direction

is between u and u+du is given by

2-rrkT

hence the intensity of radiation between a and a+da is proportional to

mca -^dr-, / ^fcroIX
r~i^7dcr.

* SOMMEBFELD and UNSOLD, Zeits. fur Phys. 36, 259; 38, 237 (1926);
see also SLATER, Proc. Nat. Acad. Sci. 11, 732 (1925).
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Numerically, if T is expressed in thousands of degrees and m is expressed in

atomic weight units,
a/(7o== -958 x 10-V5&amp;gt;.

The liquid-air bath does not prevent some warming of the gas during the

discharge and the observed widths correspond to a temperature of about

200 K., that is, a~0*07 cm*1
, so the width of the lines is comparable with

some of the intervals in the pattern. With this in mind we expect that (g)

will be too weak to show, that (a) and (b) will be lumped together and that

(e) 4- (f)
will produce an asymmetry on the curve produced by (c) -f (d).

This is exactly what was found experimentally.* Especially important is

the occurrence of (e) + (f), since on the original fine-structure theory of

Sommerfeld this component is forbidden. Its presence therefore lends support
to the present interpretation of the fine-structure levels. The relative

intensities are found to depend somewhat on the discharge conditions.!

The relative intensities of the absorption of the first three Balmer lines

has been studied by Snoek. J He found the relative values to be, for the two
fine-structure groups arising from the two initial levels,

Ha:Hj3
:H

y
= 100: 18-8: 7-4 (from j= f)

100:20-2:8-5 (fromj==|).

The theoretical ratios for absorption from the J= f or from 2p are

100:17-6:6-3,

while those for absorption from the 2si are

100:24:9-9.

The experimental values from J=f are in good agreement with the theory
and those from j= | correspond quite closely to a mean between the theo

retical values for 2s t and 2pi .

The same question was studied by Carst and Ladenburg by measuring
the amount of the anomalous dispersion around Ha and H^. The uncertain

element here is the amount of correction for negative dispersion due to

atoms in the n= 3 and n= 4 states. They conclude that the oscillator strength
ratio is between 4-66 and 5*91 for Ha:H0. Since the oscillator strengths are

proportional to the absorption, we see from the foregoing figures that the

* The principal papers are;

EANSEN, Ann. der Phys. 78, 558 (1925);
KENT, TAYLOR and PEARSON, Phys. Rev. 30, 266 (1927);
HOUSTON and HSIEH, Phys. Rev. 45, 263 (1934);
WILLIAMS and GEBBS, Phys. Rev. 45, 475 (1934);
SPEEDING, SHAKE and GRACE, Phys. Rev. 47, 38 (1935).

t See BETHE, Handbuch der Physik, 24/1, 2&amp;lt;* ed., 452 (1933).

j SNOEK, Diss. Utrecht (1929); Archives Neerlandaises, 12, 164 (1929); Zeits. fur Phys. 50, 600

(1928); 52,654(1928).
CABST and LADENBTJBG, Zeits. fiir Phys. 48, 192 (1928).
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theory gives 4-16 if all atoms are in the 2s states and 5-68 if all are in the

2p states, while the average according to statistical weights is 5-37.

Ornstein and Burger* studied the relative intensity in emission of Balmer

and Paschen lines having the same initial states so as to eliminate the un

certainty as to the number of atoms in the initial states. The results were

Obs. Theory

H^/Pa (4-&amp;gt;2):(4-&amp;gt;3)
2-6 3-55

Hy/Pp (5-&amp;gt;2):(5-^3) 2-5 3-4

H5/Py (6-&amp;gt;2):(6-3) 2-0 3-2

The theoretical values are based on assumption that each initial state has

the same number of atoms in it. The departures indicate that this is not the

case and that there must be an extra supply ofatoms in/ states since these

contribute to the Paschen lines but not to the Balmer lines.

An interesting absolute measurement of the life time of the excited states

of He+ was made by MaxwelLf He excited the helium by electron impact

occurring in a narrow electron beam. The excited ions produced were drawn

out by a transverse electric field which did not sensibly affect the original

electron beam because of the presence of a controlling longitudinal magnetic
field. The ions move various distances in the transverse field before radiating,

corresponding to the probability distribution of life times. By studying the

spatial distribution of intensity of light he was able to infer the mean lives

of the excited atoms. For the n = 6 states of He+ he found a mean average
life of (1* 1 0-2) x 10~8

sec, while the theoretical value is ! 17 x 10~8 sec. The

mean life is -fa that ofhydrogen since the frequency cubed varies as ZQ and the

radius squared varies as 2~2 inthe expression for the transition probability.

8. General structure of the alkali spectra.

In the next chapter we shall formulate the problem of the motion ofN
electrons in the field of a nucleus and shall see that there is a limit to the

number of electrons of each nl value that can occur in the atom. When for

a given value of nl the maximum number is present, we speak of these as

forming a closed shell
(
56). If we have an atom in which all the electrons

but one are in closed shells, the mutual interaction of the electrons is greatly

simplified and the energy-level scheme is, to a good approximation, just that

of a single electron moving in a central field
(
106

). This effective central

field for the extra electron outside closed shells is the resultant field of the

nucleus and of the other electrons, so for neutral atoms it is of the form

e2/r at large distances from the nucleus and is equal to (Ze
2
/r) + C at

small distances, where G is the constant potential at the origin due to the

electrons in closed shells.

* OKSTSTEIN and BUBGER, Zeits. fur Phys. 62, 636 (1930).

f MAXWELL, Pfcys. Rev. 38, 1664 (1931).
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Since this is a central-field problem, we may apply I5 and classify the

states by quantum numbers n and I. The angular factors will be those corre

sponding to precise Tallies ofangular momentum. Since the potential energy
at each distance is less than in the simple Coulomb law, the energy corre

sponding to each nl is lower than for the corresponding hydrogen state.

Moreover, since the difference betweenthe potential energyand the Coulomb

law is greater at small values of r, the difference is greater for smaller values

ofZ.

It is convenient to discuss the empirical data by introduction of the

effective quantum number n* defined by

-R/7i*
2

, (I)

HYDROei/t-
UK

6-

5-

Fig. 4s . Energy level diagram for sodium. The S series is known to n= 14, the P to
n= 59, the D to n= 15, and the F to n= 5. The only doublet terms which have
&quot;been resolved are the first seven of the P series.

where R is the Rydberg constant for the atom in question. The dependence
of ri* on n is almost linear, so that the difference (n n*) = A, which is called

the quantum defect, is almost constant in a particular series (constant I,

varying n) ofterms. These facts are illustrated in Fig. 55 where the empirical

values of the quantum defects are plotted for the various series of the alkali

spectra. Each plotted point on this scale is big enough to cover the variation

ofA with n along a series. This shows clearly that the/ terms even in Cs are

approximately hydrogen-like although all others in Cs show large displace

ments from the hydrogenic values.
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The much smaller dependence of A on. n in a given series is shown in

Fig. 6s for several typical series. This shows the difference, A(wZ) minus the

A for the first member ofthe series, as a function ofn. It will be noticed that

A increases with n in the d series and decreases in the s and p series.

The various empirical formulas for the terms in a spectral series which

are in use among spectroscopists may all be regarded as formulas for the

dependence of n* or A on n. The simplest

is the Rydberg formula which simply

regards A as a constant. Other special

formulas which are in use are

(Ritz),

(Ritz),

(Hicks).

In the first of these the deviation of A
from constancy is proportional to the &amp;lt;

term itselfwhich means that the quantity

represented is contained implicitly in the

formula which represents it.

In considering the variation of the

one-electron spectra along an iso-elec-

tronic sequence, it is desirable to take

account of the large dependence on the

degree of ionization by writing

Fig. 5s . Variation with I and Z of

quantum defect A in alkali spectra.

2
(2)

as the equation defining n*, where ZQ is the net charge ofthe Ion aroundwhich

the single electron moves (one for neutral atoms, two for singly-charged ions,

etc.). For higher values of the nuclear charge in an iso-electronic sequence

the departure from the Coulomb law caused by the inner group of electrons

is smaller in proportion to the whole potential energy. Therefore we expect

the terms to become more hydrogen-like as Z increases in such a sequence.

This means that the &(nl) tend to zero as ZQ increases. This is illustrated in

Fig. 75 where A for the s and p terms of the eleven-electron sequence, Na I,

Mgll, A1III, and Si IV is plotted against Z .

In the orbital form of the atomic theory there was a sharp distinction

between penetrating and non-penetrating orbits, the former being those

which extend into small enough values of r that the field has a non-Coulomb

character. This distinction is not so sharp in quantum mechanics as all of

the eigenfunctions have non-vanishing values near the origin. Nevertheless

the states of the higher I values penetrate less, as in the old theory. For the

non-penetrating orbits the old theory gave an explanation of the slight
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departures from hydrogenic values by assuming that the core of the atom,

composed of the inner groups of electrons, is polarized by the field of the

outer electron, so that the electron s motion was perturbed by an interaction

term, - cte
2

/2r*&amp;gt;
where a is the polarizability of the core. Using values of a

inferred from ion refractivity data, this gives a fairly satisfactory account

of the deviations.

The alkali spectra have, of course, a doublet structure caused by the

spin-orbit interaction discussed in 45
. Since nl is essentially positive,

2I7_
f
.i &amp;gt;

2
z_|, i.e. the level with higher j value is higher in energy. This

,0 j

tween the quantum defect of

to which it belongs is plotted
numbers of these terms.

O&quot; -O J

in alkali spectra. The difference

.at of the lowest term of the series

order is called normal. For fields not deviating too greatly from Coulomb

fields we may expect the value of the doublet interval to be given roughly

by 4511, which can be written in the form

: 5-822 - -cm~ (3)

If this form has any kind of approximate validity for the alkalis, we expect
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that the doublet Interval will vary about as 1/n
3

. The absolute value of the

Intervals we do not expect to be given at all by the formula. The approximate
variation as i/%

3 is shown in Fig. 85 , in which Is plotted, on logarithmic

scales, the doublet interval as ordinate and n

as abscissa for aH the known doublets of the

alkalis. From this it is clear that in the main

the variation is like 7i~3 or ^~4
, but the diagram

also shows some striking exceptions, thus far

unexplained. For example the D series of both

Rb and Cs show a remarkable discontinuity
&amp;lt;

in their values so that hi the case of Rb for

tt=11 the interval takes a jump from an ex

pected value of about 1 cm&quot;&quot;
1
up to 6 cm&quot;

1
, which

is twice as big as the interval for n= 5, the first

member of the series. In the case of Cs the

intervals for = 13 and 14 take a similar sudden j^ 7s, Variation of A in

jump upward and become nearly equal to the the Na-like iso-electronic se-

P intervals for the same T& S.

2 4- 5 6 7 8 9 (0 il 12 & 14

Fig. 85 . Variation of doublet interval with n in alkali spectra.
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Data on doublet intervals for F series are scarce, indicating that the

interval is usually small. But in the case of Cs it is definitelyknown that the

doublet F terms are inverted, that is, the level with the higher j value has

the lower energy. The separations, however, are very small:

The first order perturbation theory is quite inadequate for explanation of

this inversion since is essentially positive.

We turn now to the relative intervals ofcorresponding terms in D and P
series. According to the hydrogen formula these intervals should be as 1:3.

We expect them to be less than this in the alkalis, since thep eigenfunctions

have appreciablevalues forsmallervalues ofrthanthed eigenfunctions. Since

the deviation from the Coulomb law is in the sense of stronger fields than

Coulomb at smaller distances, this tends to make for a p state greater than

for a d state in a larger ratio than for hydrogen. That those expectations
are borne out is shown in a table for Cs:

10 11 12 13 14

0-078 0-115 0-135 0-182 0-164 0-192 0-096 0-964 1-02

The anomaly of the last two terms, already mentioned, is here striking.

In the case ofthe iso-electronic sequence Li I, Bell, etc. the interval for

2p is known and agrees quite well in absolute value with the value given by
the theory for hydrogen:

Various somewhat empirical modifications ofthe doublet interval formula

(3) have beenproposed. Landeffrom an analysis ofthe classical penetrating-
orbit picture proposed replacing Z* by Z\Z\^ where ZQ is the net ion charge
as in (2) and Zi is an effective nuclear charge in the inner region to which the

orbit penetrates, and replacing n
z
by n**. Another modification that has

been used a great deal by Millikan and BowenJ regards the entire orbit as

determined by a Coulomb field of effective nuclear charge (Z S), where 8

f LAOT&amp;gt;&, Zeits. for Phys. 25, 46 (1924).

j MTT.TJgAK and BOWEN, Phys. Bev. 23, 764 (1924); 24, 209, 233 (1924).
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represents the amount by which the full nuclear charge is diminished by

screening of the field by the inner electrons. If one chooses values of S to fit

the observed 2p intervals in the Li I to OVI sequence, they are found

(third row in the above table) to be nearly equal to two, which is a reasonable

value. In the older theory the formula (3) was derived as a relativity effect

and therefore should have applied to the interval between s and p terms

rather than to the 2P interval. This puzzle was solved by the interpretation

of the doublet formula as due to the spin-orbit interaction.

9. Intensities in alkali spectra.

After we have found a central field which gives a satisfactory representa

tion of the energy levels of a one-electron spectrum, we may use the eigen-

functions of this field to calculate the radial integrals

rJ o
r(nl)R(n l-l)dr

o

which are needed for the intensity problem. The theory goes exactly as for

hydrogen (
65

)
with these integrals replacing the ones based on hydrogenic

eigenfunctions.

The first point to be noticed is the 2: 1 strength ratio in the principal

series n 2P ~&amp;gt;

2
$, which was already calculated in our discussion ofhydrogen.

This value* is observed for the first doublet in Na and K. For Rb the ex

perimental ratio for the second doublet is 2*5 while in Cs the ratios for the

second and third doublets are 4-0 and 47, although it is 2-0 for the first

doublet. The explanation of these departures, due to Fermi, is considered

in515
.

Next we consider the relative strengths of the doublets in the principal

series. Most of the experimental data is expressed in terms of effective

f values for the unresolved doublets, defined in a way exactly analogous to

the definition in 9*14 of the f values for lines. For the doublet of wave

number a connecting the low-energy configuration nl and the higher con

figuration n Z , 1 l*\$(n l ,nl)= ~~ I

where S is the total strength of the doublet. Calculations of the f values

for the principal series 25 np of Li have been made by Trumpyf using

radial eigenfonctions based on a Hartree field (
814

) . The ratios of the f values

of successive doublets were measured by FilipovJ by the anomalous-

dispersion method. The striking thing is the very large ratio, 136, of the

first to the second doublet. In Table 75 the experimental values of Filipov

* The experimental data are summarized by KORFF and BREIT, Key. Mod. Pliys. 4, 471 (1932).

t TEUMPY, Zeits. fur Piiys. 61, 54 (1930); 66, 720 (1930).

t FILIPOV, Zeits. fur Piiys. 69, 526 (1931).
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are given as calculated from the measured ratios assuming the first one to

have the theoretical value calculated by Trumpy. To show how much the

values are affected by the departure of the Li eigenfunctions from the H
functions, we have given in the last column the values obtained by using

hydrogenic radial integrals togetherwith the Li frequencies in the theoretical

formula.

TABLE 7s. f values in the Li 2s - np series.

Similar calculations for the 3s np series in Na have &quot;been made in

dependently by Prokofjew, Trumpy and Sugiura.* ProkofJew s method of

obtaining the central field is discussed in 314 ; Sugiura s method is similar.

Trumpy used a Hartree field. The experimental ratios were measured by
Filipov and Prokofjewf and as to. the table for Li have been reduced to

absolute values by assuming agreement with Trumpy s calculations for the

first line. These are given in Table 85
. The small inset table gives the values

as calculated by Prokofjew for several other doublets.

Values for the principal series of Cs (for which no theoretical calculations

have been made) and ofthe ratios of the first two doublets of the principal
series in K and Eb are given in the report by Korff and Breit (loc. cit.).

Zwaan| has calculated the spontaneous transition probabilities

A(4p-*3d)= 0-13 x 1C8 sec-1 and A(4p-*4a) = 1-55 x 108
sec&quot;

1

for Ga II using eigenfunctions of a field determined by the method of 314 .

The values are of interest in connection with Milne s theory of the support
of calcium in the solar chromosphere by radiation pressure.

* PBOKOFJEW, Zeits. fur Phys. 58, 255 (1929);
TRCMPY, ibid. 61, 54 (1929);
SUGTOKA, Phil. Mag. 4S 495 (1927).

t FILIPOV and PROKOFJEW, Zeits. fur Phys. 56, 458 (1929).
j ZwAAtf, Biss. Utrecht, 1929.

HIKN~E, Monthly Notices B.A.S. 84, 354 (1924); 85, 111 (1924); 86, 8 (1925).
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TABLE 85 . f values in tUe, NaZs-np series.

149

10. Zeeman. effect.*

When an atom with one valence electron is placed in a magnetic field, the

energy levels are split into several components, giving characteristic Zeeman

patterns. The interaction energy which produces these displacements con

sists oftwo parts, that arising from the spin of the electron and that arising

from its orbital motion.

On the spin hypothesis (
53) an electron has a component of magnetic

moment of magnitude + eS/2/xc in the direction in which the component of

spin angular momentum is %K. Since the energy of a particle of magnetic

momentM in a field^ is -M%^ ,
the interaction energy of the magnetic

electron may be written

(1)

The effect ofthe magnetic field on the orbital motion of the electron is best

obtained by using the vector potential A, where Jtf = euxlA. The Haniil-

tonian for a particle of charge
- e in the field of potential A is obtained by

writing p -f (ejc)A in place of the momentum p in the Hamiltonian for the

case without the magnetic field,t Then, in place of the term &amp;gt;

2
/2^ we have

Now sincep= -fftgrad, we obtain, using a formula of vector analysis,

i= - ifi drr(Aifr)
= -

iffy div-4
- ift^-grad^

= A*pff

* HEISENBEKG and JORDAN, Zeits. fur Phys. 37, 263 (1926);

C. Q. DABWEN-, Proc. Roy. Soc. A115, 1 (1927);

K. DARWIK, ibid. A118, 264 (1928).

f See CONDON and MORSE, Quantum Mechanics, pp. 26-27. (Note that their development is for

a particle of charge +e.)
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if we clioose A as a solenoidal vector (i.e. so that divA = 0: this may always
&quot;be done). Hence the energy due to the magnetic field may be written as

For a uniform magnetic field 3%?, we may take A = \(^f x r).*

We shall now make a rough calculation of the order of magnitude of the

terms in (2) which will show that the second is entirely negligible for all

magnetic fields thus far used in the laboratory. In atomic units (see Ap
pendix), e= 1, /z

=
1, c= 137, r and p for an electron are of the order of 1.

The usual magnitude of ffi in Zeeman-effect measurements is from 10,000

to 30,000 gauss, i.e. from 0-6 to 1-8 x 10~3 atomic units. The larger of these

values gives .4~0-9 x 10~3 atomic units, and the first term of (2) ~0-65 x 10~5

atomic units of energy 1-5 cm&quot;
1

. This is an energy which may easily be

measured spectroscopically, since the limit of spectroscopic accuracy in the

visible is of the order of 0-001 cm-1
. On the other hand, even ifwe take^ as

200,000 gauss (which is about the highest field anyone has ever succeeded

in using), the second term represents an energy of only 0-0002 cm-1
. This

magnitude is certainly at present undetectable.

HenceweshaEconsideronlythefirstterm of(2). Whenweset-4 =
this interaction becomes

A-p=~^f x r-p=^^*r xp = -&!*. (3)
\ic

*
2jjLC

*
2/iC

* v }

When this is added to (1) we obtain as the whole effect of the magnetic
field the energy

(4)

In particular if we take the z axis in the direction of^ this interaction

energy becomes

where o is a coefficient proportional to the magnetic field strength

Thus the energy (5) arising from the interaction of the atom and the mag
netic field is diagonal in a representation in which Lz and Sz are diagonal,
i.e. in the representation 452.

* To show that this represents a uniform magnetic field ^, we have

r) =

Since &f is constant, the first two terms are zero. The third term is -^ and the fourth 3^, hence
curL4 =3if. Similarly div-4 =0 as required.

f Note that this is 2?r times the o as usually defined (the classical Larmor frequency).
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Weak-field case.

In the case in which the Zeeman splitting is small compared to the spin

doubling we can consider (5) as a perturbation on each of the two levels

obtained by the spin interaction separately. We must thus calculate the

matrix components (nl*Lf\H
M
\nl*Lf) for the different degenerate states

of the level nl ^L
j

. These are easily obtained from 458:

2Z-M4-1&quot; ,.
This matrix is already diagonal so that the displacements of the different

Zeeman components of the level 2
Li are given by

. (8)

The factor
2Z+ 11

is known as the Lande g-factor. This derivation holds
Ztb ~T&quot;

A

for 5 levels as well as for those with I &amp;gt; 0.

Thus, for weak fields, to the accuracy with which 4
58 represents the eigen-

^
5

s of the components of the spin doublets, each level is split symmetrically

into 2j-f 1 equally spaced states, the splitting being proportional to the

magnetic field, and being independent of the value of the total quantum

number n and of the atom in question. The interval between the states after

splitting is determined completely by g, which depends only on I and j. For

a given I, the level of higher j is more widely split than the level of lower j .

A table of y-values is given below:

g-values for doublet spectra.

*S *P 2D *F 2# *B

. n+i 2 | f f H
H^i - * * * t

In terms ofwave-numbers the displacement (8) is given by

(9)

where^ is in gauss.* The accuracy with which this formula holds for all

* Not the accuracy of our estimate of 1-5 cm&quot;
1 as the magnetic perforation caused by a field

of 30,000 gauss.
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doublets of all one-electron atoms and ions was early discovered experi

mentally, and is expressed by Preston s Rule* Indeed, one of the methods

of obtaining e//i is by the accurate measurement of this Zeeman effect.

The strong-field case PascJien-Back effect.

We have been considering the case where the Zeeman effect is small com

pared to the spin interaction. We shall now consider the other extreme,

where the magnetic field is so strong, or the spin-orbit interaction so small,

that the spin splitting is negligible compared to the magnetic splitting. In

this case we start withthe degenerate configurationnlandthesystem of eigen

functions ^(nlm/n^ in which HM is diagonal. The magnetic energy is then

given by (^^m^|o(J,+^)|^msmz)
=^o(m+ms). (10)

Hence each configuration is split symmetrically into 21 + 3 equally spaced

components corresponding to the 2Z -f 3 possible values, Z + 1, Z, . . ., (Z -f 1),

of m +m5 (
= Wj-h2ms). Of these the two highest and the two lowest are

non-degenerate, while the others are doubly degenerate corresponding to the

two ways ofobtaining a given value of (m^ -f (2m,) : (mz) -f (
1 ), (m,+ 2) + (

- 1
)

.

Ifwenow superpose a small spin-orbit interactionwegeta displacement for

thenon-degenerate components represented by fr-2 (wyraj|L-S|wynj)
= m

z
ras

(cf. 73
3). For the degenerate components we note that because of the

S(m 5m )
in 733 there are no matrix components of L*S joining the two

states, so that each state is displaced by the amount m#ntf ,
which may or

may not split the component.
This state of affairs is known as the Paschen-Back effect, the eigen-

functions in this case being those labelled by

The transition case.

We have been able to determine very simply the Zeeman splitting in two

extreme cases, that in which the magnetic interaction is small compared to

the spin-orbit, in which case the eigenfunctions are labelled byj and m; and

that in which the magnetic interaction is large compared to the spin-orbit,

in which case the eigenfunctions are labelled by ms and mz
. In order to

obtain the transition between these two extreme cases we must apply the

spin-orbit and magnetic perturbations simultaneously, treating

H!+Hv^(r)L*S+o(Jz -}-S3) (11)

as a perturbation.

We use the fundamental system of eigenfunctions labelled by nlmsmt ,
in

which the matrix ofHM is diagonal and the matrix ofH1
is given by 453. We

shall again consider just the matrix for a given nl. From 733 we see that this

matrix will split up according to m. The values m= I + J and (1 4- J) are

* This rule applies also to atoms with more than one electron outside of closed shells. See 216.
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realizable in just one way, namely with m
2
=

1, ms
= | respectively.

Hence the energies corresponding to these states are obtained immediately
from 7^3:

i -
^ ^

For the other values ofm we obtain the second-order secular equation:

which has the two solutions

- t*l (I+ 1)}.

(12b)

Here represents the magnitude of the spin perturbation while Ho

represents the magnitude of the magnetic perturbation. If we neglect

($o/)
2
compared to I, we obtain

which agrees with the weak-field case as given by (8) and 457. If we neglect

we obtain = -

which agrees with the results obtained in the strong-field case.

The complete transition (12) is plotted in Fig. 95 for the case of a 2P term.

The splitting is plotted in units of as a function of
&&amp;gt;/,

the ratio ofmagnetic

to spin interaction. The broken lines at the left are given by (13) while those

at the right are given by (14).

The best experimental data on the complete Zeeman effect are furnished

by the work ofKent* on the Li doublet A6708,which arises from the transition

2p 2p_&amp;gt; 2s*S. For most doublet spectra the doublet interval is so large, i.e.

is so large, that the highest utilizable magnetic fields will correspond to only

small values offioj^i hence a good Paschen-Back effect is not obtainable.

But the doublet splitting of lithium is very small; the 2p
2P has a splitting

of only 0-338 cm.-1 (
= f)- Kent used a maximum field of 44,200 gauss, and

since fio= 4-670 x 10~5Jf cm&quot;
1

,
this corresponds to fto/

= 9-16, a value even

beyond the limits of Fig. 95 .

The best way to compare our curves with Kent s data, which is not of

sufficient accuracy to be fairly reduced to term values, is by plotting the line

pattern which should result from a transition between the 2P of Fig. 95 and

* KENT, Astroptys. J. 40, 337 (1914).
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a 2$. From (12a) we see that a 2$ is split uniformly into two states with

energies fio and So; hence to the scale of Fig. 95 a 2$ would be represented

by two lines through the origin of slopes 4- 1 and I corresponding to

m= |.

In Fig. 105 we have plotted the line pattern for transitions between a 2P
and a 2

S, using fall lines for perpendicular (a) components (Am= 1) and

broken lines for parallel (77) components (Am = 0). Kent s observed patterns

are plotted on the same figure, using circles for a components and crosses for

TT components. The abscissas are fixed by the relation &o/ = 2O8 x

* &/&amp;gt;+ *
oft/c,

*

Fig. 9s
. Paschen-Back transformation of a 2P term.

which holds in this particular case. For most of the patterns, the absolute

values of the ordinates were obtained by Kent by comparison with another

line in the same exposure, but the relative values are certainly to be taken as

of more value than the absolute. For example, the pattern at abscissa 1-12

is certainly to be shifted bodily toward the red.

The agreement of these experimental values with the theory is excellent

in view of the difficulty of accurate measurement of such fine patterns. It is

pleasing that the theory of the Zeeman effect gives, purely from symmetry

considerations, the absolute values of the perturbations, so that the pattern

of Fig. 105 is completely determined in absolute value if one knows the

doublet splitting.
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Intensities.

The relative strengths of the allowed transitions in the weak-field case

may be obtained by use ofthe matrix components calculated in 93 and 1 13 .

The details are given in 416
. Fig. 1 1

5 shows the expected line pattern for

2
P-&amp;gt;

2S
3
with the relative strengths for observation perpendicular to the

magnetic field indicated by the lengths of the lines.

(7) (8)

I 1

(9)(JO)

! I

M M

(a) ., (si

TT

cr

&)(*)

Fig. II 5
. Allowed transitions and

strengtiis in the weak-field Zeeman
effect.

Fig. 125
. Allowed transitions

and strengths in the Paschen-
Back hmit.

In the Paschen-Back limit we have the selection ride Ams
= in addition

to the rule Am (
= Am,)=1,0. The allowed components for 2P--2

/S
f

are in

dicated in Fig. 125 . The strengths in this case are readily obtained from

formulas like II39. For large fields lines 2, 5 and 3, 4 respectively become

asymptotically parallel to and equidistant on either side from the outer com

ponents of a normal Lorentz triplet of interval fio. Hence Kent s pattern in

which these lines are unresolved forms almost exactly a Lorentz triplet.

For intermediate fields, we may at once obtain the strengths from the

eigenfunctions. Since $(np-*Pl) = &amp;lt;f&amp;gt;(np%l)
and iff(ri$

2

S^)
=

&amp;lt;j&amp;gt;(n s^Q), the

eigenfunctions for these states are independent of field; hence the strength
of component (5) is independent of field. Similarly the strength of (4) is
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independent of field. For m= |, we may find from a set of equations like

722 the coefficients in the expansion

From these we find

So the strength ofthe component from one ofthe states to 2

$^
is a2

,
from

the other, /J
2 times the strength from np -fm+| in the Paschen-Back limit.

Since a2 4- ]3
2=

I, the sum of these strengths is a constant.

Fig. 135
. The variation in strength of the components of 2P -&amp;gt;

2 in

a Paschen-Back transition. (The numbers are values of
&&amp;gt;/ .)

In Fig. 135
,
which is taken from the paper by K. Darwin, are indicated

roughly by the widths of the lines the intensities of the transitions of Fig.

105 . Referring to the numbering of Fig. 105,
lines (4) and (5) are of constant

strength; the sums of the strengths of (6) and (2) and of (3) and (1), for the a

components, of (7) and (9), and of (10) and (8), for the -n components, are

independent of ffl. While no intensity measurements have been made with

sufficient accuracy to check quantitatively these changes in intensity, we

may note that Kent observes none of the lines which are forbidden in the

Paschen-Back limit at values of fiojt, greater than 2-1.



CHAPTER VI

THE CENTBAL-FIELD APPROXIMATION*

We shall now proceed to lay the foundation for the theory ofspectra ofatoms

containing more than one electron. The mode of describing spectra that is

used by working spectroscopists everywhere is based on the idea that the

atoms can be treated to a fairly good approximation by regarding the elec

trons as moving in a central field and not interacting with each other. This

is made the starting-point for a calculation in which the interactions actually

occurring are treated as perturbations. We shall see that the relative import
ance of different kinds of interactions varies a great deal from element to

element, and that this is in a sense the origin of the different spectroscopic
and chemical behaviour of different elements. In all atoms there will be
terms in the Hamiltonian which represent the magnetic interactions of the

electronic orbits and spins and terms which represent the Coulomb repulsion
ofthe several electrons. At present it is not known how to give a satisfactory

theory of atoms with, more than one electron which takes into account

relativity effects: in fact, even the exact relativistic treatment of hydrogen
which allows for the finite mass of the proton is not known. But relativity
effects are usually small so that one can give a fairly satisfactory treatment
of the subject in spite of this defect.

In this chapter we shall also study some of the features of the atomic

problem which have their origin in the fact that all electrons are believed to

be dynamically equivalent. This fact provides a natural place in the theory
for an empirical ruleknown as PauWs exchmon principle and makes possible
a fairly complete understanding of the periodic table of the elements.

1. The Hamiltoaian for many-electron atoms.

According to the nuclear model, we regard an atom as made up ofa central

massive positively charged nucleus, surrounded by a number of electrons.

This dynamical model is described in the theory by a Hamiltonian function

whose proper values give the allowed energy levels and whose proper func
tions are of use in calculating various properties of the atom. Since for all

atoms the nuclear mass is more than 1800 times that ofthe electrons, we may
approximatelyregard the nucleus as a fixed centre of force instead oftreating
its coordinates as dynamical variables. This amounts to treating the nucleus
as of infinite mass: the correction to finite nuclear mass is treated in I18 .

The principal interactions between the particles are due to the Coulomb
* The method used in this and the next chapter is due to SLATES, Phys. Rev. 34, 1293 (1929).
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electrostatic forces. For most purposes we can neglect the relativistic

variation of mass with velocity; thus for a system ofN electrons moving

about a nucleus of charge Ze we are led to the approximate Hamiltonian

-pi -W s . (i)

Here subscripts 1, 2, ..., N serve to distinguish the different electrons, r is

the distance ofthe it31 electron from the nucleus and r
tj

is the mutual distance

of the iih and^th electrons.

In addition to the terms written down it is essential to treat the magnetic

interactions of the electronic orbits and spins. The exact way of doing this

along the lines of a generalization of Dirac s relativistic theory ofthe electron

to a system ofseveral electrons is not known; some work in this direction and

its relation to the helium spectrum we shall report in 77
. An approximate

allowance for the spin-orbit interaction may be made by including for each

electron a term of the form gfa) L^St such as we have introduced in 45 for

the doublet structure of one-electron spectra. We shall adopt this as our

working hypothesis and to a large extent base the theory of atomic spectra

on the quantum-mechanical properties of the approximate Hamiltonian

(2)

In this Hamiltonian, the terms expressing the mutual repulsion of the

electrons prevent a separation of variables. These terms cannot very well

be neglected as small
5 and treated later by perturbation theory, for

although if Z is fairly great any one of them is small compared to a Ze2
/r

term, there are so manyofthem that their total effect is comparable with the

interaction between the electrons and the nucleus. The procedure generally

used is based on the idea of screening, according to which the greater part

of the mutual repulsion terms is taken into account in the approximate

solution on which a perturbation theory treatment is based.

The mutual repulsion terms, being all positive, tend to cancel the negative

terms which represent the attraction of the nucleus. If r+ is large compared

to all the other r^ then r^r^ and e2/r^~e
2
/?v Since there are N- 1 values

ofj associated with a particular value of i, one

sees that at large distances the electron moves

in a field that approximates to(Z-N+ I)e
2
/r^ . .

*

We say that the other (NI) electrons have .&quot;.

screened off the force field of the nucleus. Now
Fi p

as ri diminishes to a value comparable with the

values of the other r s, this compensation becomes less exact. From poten

tial theory we know that if the other electrons have a distribution with
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spherical symmetry, then inside a shell of radius a and total charge e
f

the potential due to the shell is constant and equal to e /a; hence the

potential energy of an electron inside such a shell is ee ja. For an electron

near the nucleus, ri is small compared to the other
r^ , so its potential energy

as a function of ri will approach the form

Ze\ (N-l)e*
r

t
a

in which a is the harmonic mean of the radii ofthe shells in which the other

electrons are distributed. From these general remarks we see that a large

part of the effect of the mutual repulsion of the electrons can be allowed for

by starting with a Hamiltonian in which the potential energy of each elec

tron at distance r from the centre is such a function U(r) that

---
i- C for r small,

T

f ,

for r large.

Later we shall see that in this characterization of U(r), r small and r large

mean respectively r^a/Z and
r&amp;gt;a/(,Z JV-f 1) 5 where a is the Bohr

hydrogen radius of 252.

Our programme will be to build up a systematic theory of the spectra of

atoms based on the use of such a screened potential-energy function as the

starting point of the perturbation theory. We shall see that a large amount

ofgeneral information about spectra can be obtained with hardly any more

detailed assumption about U(r) than this. In Chapter xiv the theory will be

extended by detailed consideration of the question of the best assumptions
for U(r) and the actual evaluation of quantities that depend on the choice

made.

The approximate Hamiltonian E which we make the starting point ofour

calculation takes the form

(3)

while the perturbation potential will consist of the difference

S . (4)

2. Equivalence degeneracy.

The Schrodinger equation for the allowed values ofE (1
6
3) takes the form

^-^+U(rj^4= ]B t. (1)
i=lL -*/* J

Since the left side of this is the sum ofa number ofparts each ofwhich refers
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to the coordinates of only one electron, it is evident that the variables can

be separated if we write
N

= n UiW^u^a^u^
;

Since the Hamiltonian E is a symmetric function of the coordinates of the

different electrons, theN equations for theN factors ofthe wave function are

all of the same form so that it is not necessary to carry a subscript to show to

which electron s coordinates we refer; each u is the same function of its

coordinates for the same set of quantum numbers at. Physically this means

simply that in the absence of interaction each electron moves in the central

field U(r) exactly as it would move if the other electrons were not present.

The equation for each u is

For convenience, we denote by at an individual set of four quantum num
bers which specifies the state of motion of a single electron in a central field.

Thus at represents a set of values (n Imsml)
or (n Ij m) according to the way

in which we wish to treat the one-electron problem.
It is clear now that the Hamiltonian E possesses a high degree of degen

eracy, which may be regarded as of two kinds. First, there is that which

arises simply from the fact that the Hamiltonian for the individual electrons

does not depend on spin or on spatial orientation the energy E (at) is

really independent of m
t
and ms . This kind of degeneracy we have already

studied in connection with one-electron spectra. Second, there is the

degeneracy that goes with the fact that the N individual sets of quantum
numbers of the complete set of 4JV&quot; necessary to specify the state $ can be

associated in any way with the electrons 1, 2, 3, ... to give a &amp;lt; which belongs

to the same total energy. This degeneracy arises because the Hamiltonian

is a symmetric function of the coordinates of the several electrons, i.e.

because of the dynamical equivalence of the electrons, and is therefore

known as equivalence degeneracy.

A convenient notation for the different &amp;lt; s associated with a particular

set of quantum numbers is now desirable. We shall let A stand for the com

plete ordered set aL az ...aN of one-electron quantum numbers, and shall

understand by &amp;lt;$&amp;gt;(A)
the particular function

in which the first electron is associated with a1
,
the second with a2

, the third

with a3
, and so on. Then let the operator P stand for a particular permutation
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ofthe electron indices relative to the quantum numbers in
&amp;lt;j&amp;gt;(A).

A particular

P can be specified by the scheme

/12345...\

.../

-

\25314.
whicli means that after the permutation has been carried out the coordinates

of the second electron appear where those of the first were, the fifth replaces

the second, the third remains, and so on. Thus with P as in (5), the result of

operation by P on
&amp;lt;j&amp;gt;(A)

is

PftA) -^(a1
) u,(a*) 3(a) %(a*) %(a

5
)
.... (5 )

With N electrons, there are 2V! such permutations.* Any state associated

with the quantum numbers a1 a2 a? ... is thus of the form

rtA^ZCtPftA), (6)
P

where the CP s are an arbitrary set of coefficients.

The next problem is that of determining the particular values of CP
which correspond to the states of the atom as observed in nature. Before

considering this question we may note that unless a number of the C^s
vanish, the occurrence of the summation in (6) makes it impossible to speak

of a definite electron, say the first, as having a particular set of quantum
numbers. There are N electrons and N sets of quantum numbers, but there

is not a definite correlation of electron identities with quantum numbers.

3. The dynamical equivalence of the electrons.

We recognize immediately that all physical observables are symmetric

functions of the coordinates of all electrons in the system (in fact, of all

electrons in the world). If this were not so, the particular electron which

occupied an unsymmetrical position in the form of some observable would

be observably distinguishable from the rest, contrary to experiment.

There is, however, another phase to the complete dynamical equivalence

of the electrons. If a particular electron occupied an essentially unsym
metrical position in a $ function representing the state of a system, that

electron would behave differently from the rest, even under the action of a

symmetrical disturbance. We therefore postulate that a physical ^r function

be such that all electrons have exactly the same properties the same

probabilities of being at various places, of having various momenta and

spins, etc. The idea ofthe last sentence is formulated by the requirement that

the mean value of any algebraic or differential function / of the electronic

coordinates be the same as that of the function P/, where P represents a

permutation of the electrons.

* If two or more sets of quantum numbers are identical, these do not all lead to distinct eigen-

functions; the permutations are considered distinct nevertheless.
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The form of an observable has physical significance as such; hence a

physical observable must be a really symmetric function of the electrons.

A $ function has physical significance only through the probabilities which

may be calculated from it. Hence we do not postulate that
if/
be actually

symmetric, but only that $ have sufficient symmetry that

(i)

for all permutations P and operators /. Applying the inverse permutation
P&quot;

1 to all factors in the integral on the right, which does not change its value,

we obtain
__

(2)

Now it seems obvious that if lff*fs= ff(f&amp;gt;
for all operators/, then ^ = e*

s
^,

where S is a real constant; for if
&amp;lt;f&amp;gt;

and
*jt
were otherwise related we could find

some operator to bring out the distinction.* Hence we require that

Pe/r
=e% (3)

for any permutation P.

Let us write our eigenfunction as
^-fc...,

the function which is obtained

from this by interchanging the coordinates of electrons i andj as ^&... ,
etc.

(3) then requires that ^&...
= etV#fc... By interchanging i and j again we

see that
*[riikmm .

=
e*V#fc-

= e2
*V#A&amp;gt;.. &amp;gt;

and hence that ^lfc...
=

^.... . In the

same way, the interchange of any two electrons in
i/r merely multiplies the

* An immediate proof of this may be given for the case in which the coordinates take on only
discrete values so that the integral becomes a summation, as for the case of the spin coordinates.
A formal generalization of this proof to the case of continuous coordinates may be made by use of

the 8 function. Denote the coordinates by x19 x2 , arSJ .... Then if /=S(a:1 -a1) S(a:2 -a2)..., the

equation

becomes #01,0*, fe, 2, =^1,03, ...
&amp;lt;f&amp;gt;aiy a*, ...

or
tjnff=f&amp;lt;j)

at all points, (a)

If we take/=(! -oj Sfo -%)...9/3x , we find that

#01,01, ^-^,02, =^z,a4,
...
^-^.o.,

...

or j& =$?. at all points, (b)
oXf drt

-

Pividing (b) by (a) gives r log ^=z log c^ at all points,
-

where ^ is a function of a^, 2^, ... which does not involve xi (for any i) and which is therefore a

constant. Then
,

or since ^r is a continuous function which vanishes at infinity, to satisfy (a)
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function by 1. Since the functional form of$ is completely determined by
the position ofthe indices, let the interchange ofthe first two indices multiply

^ by c12 (
=

1), the interchange of the second and the third indices by c23 ,

of the first and third by c
13&amp;gt;

etc. Then

Hence, since c|3
= 1

,
c12
= c13 .

In the same way all the c s may be shown to be equal, so that a $functionfor
a -physical state must be either completely symmetric or completely antisym

metric in all the electrons ;
i.e. the interchange ofany two electrons must leave

the function unchanged in the one case, or multiply it by 1 in the other.*

In the particular case of eigenfunctions 266 of the Hamiltonian JJf, the

choice
&amp;lt;=! for all P (4)

is seen to give us a symmetric state, while

Q*p= ( -l)p for aH P (5)

gives us an antisymmetric state. Here^hastheparityofthepermutation P.f
The antisymmetric eigenfunction (5) can be written as a determinant

VFJp v -^&quot; vm

(6)

in this form the antisymmetry follows from a known property of deter

minants.

From any eigenfunction ifi,
not necessarily of the form 264, we may build a

symmetric eigenfunction and an antisymmetric eigenfunction by the use of

the operators ..

(7)

* See PAUU, Handbuch der Physlk, 24/1, 2d ed., p. 191, for a. group-theoretical discussion of this

restriction.

| Any permutation can be regarded as made up of a number of simple interchanges, i.e. of

permutations in which (2V
-
2} indices are left unaltered and the other two simply interchanged.

The number of such interchanges for any given permutation is uniquely even or odd, and the per
mutation is accordingly said to be even or odd. p is an even number for an even permutation, an

odd number for an odd permutation.
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which we shall call the symmetrizer and the antisymrnetrizer, respectively,

These operators may be studied by purely operational methods. From the

definitions we have the relations

(8)

From the first two it follows that the eigenvalues of Sf and sf areVN I and 0.

From the third it follows that if $ is an eigen-z/r for VN ! of &amp;lt;$& it belongs to

the zero eigenvalue of &, and if an eigen-^ forVN I of ff* it belongs to the

zero eigenvalue of s.

Now a symmetric is one for which P$= fy
for all P. If S^^^VWl^, $ is

seen to be symmetric, since ^P =P^=^. But &(&ilt)=VWl&fa hence

for any &amp;lt;/r, f$ is symmetric. That f$ is essentially the only symmetric
linear combination of the A7

! P^ s is shown by the following argument,

Suppose that S CPP$ is symmetric, i.e. that PS PPijs
=S CPP$ for all P.

Then y^ CPPj=VWl E CPP$ by (7). But ^S(7PP^= (S P)^. Hence

p

if 2 (7P P^ is symmetric.

Similarly, from the fact that j/P= PJ/= (
-

l)^j/ we see that *$/ is the

unique antisymmetric linear combination of the Nl P^ s.

Hence & produces a symmetric, stf an antisymmetric eigenfunction if it

is possible to do so. If it is not possible to do so the functions 5^^ or j/$
vanish.

The factor 1/VFI is placed in & and sf so that if all Nl of the Pf s are

mutually orthogonal, then^ and j/$ will be normalized if it is. Thus the

state (6) is normalized provided that the N sets a* of quantum numbers are

all distinct.

Now we may show that if an atom is at any time in an antisymmetric

state, it will always remain in an antisymmetric state. For according to

523, if an atom has at a certain moment the antisymmetric eigenfunction

^
a

,
the rate of change of its eigenfunction with time is given by J?$

a
j
which

itself is antisymmetric. Similarly, if the atom is at a certain moment in a

symmetric state it will always remain in a symmetric state. A symmetric.

observable operating on a symmetric state gives a symmetric state; oper

ating on an antisymmetric state it gives an antisymmetric state.
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4. Tlie Paul! exclusion principle.

In the empirical study of atomic spectra which, preceded the development
of quantum mechanics, Pauli* discovered a simple generalization applying
to all atomic spectra. He noticed that iffour quantum numbers be assigned

to each electron, then states of atoms in which two electrons have all four

quantum numbers the same do not occur. This was a rather perplexing

discovery at the time it was made because it preceded the hypothesis of

electron spin, so that an interpretation of the fourth quantum number was

lacking. Although the interpretation of this quantum number in terms of

electron spin was soon given, the curious fact remains that the two individual

sets of four quantum numbers of each of two electrons cannot be alike. This

is known as Pauli
9

s exclusion principle.

We see at once that the quantum mechanics provides a natural place for

the introduction of this principle. We found in the last section two systems
of functions appropriate to equivalent particles such that which ever one

actually occurs in nature must be the one that always occurs, since transi

tions between states of different type are impossible. It is now evident that

the antisymmetric system of states satisfies the exclusion principle, since if

any two individual sets in 366 are identical the determinant vanishes.

Kothing of the sort occurs for symmetric states. Hence Pauli
J

s empirical

principle is introduced into the theory by the requirement that the $function,

de-scribing the state of a system must be antisymmetric in all electrons. This

requirement is substantiated in other ways for example by its equivalence

for free particles to the experimentally verified Fermi electron-gas theory of

metals. For this reason particles having antisymmetric eigenfunctions are

said to obey Fermi statistics. Particles having symmetric eigenfunctions

are said to obey Bose statistics photons are particles of this nature.

We shall, as a matter of convenience, reserve capital Greek letters

(Y, , X, Y, . . . ) for states satisfying the exclusion principle, i.e. for completely

antisymmetric states.

The simplest case in which the Pauli principle makes a restriction is in the

lowest energy levels of helium. One would expect that the lowest levels

would be given by states in which each electron is in a la state. This gives

four possible sets of quantum numbers, according to the four choices of the

values ofm
l
and ms ,

A: (0+0*); B: (0+0-); C: (0-0+); D: (0-0-);

where the sign ofms is written as a superscript to the value of 7%. When one

forms antisymmetric functions 366 from these sets one sees thatA andD are

ruled out by the exclusion principle, while B and C do not give independent

* PAUXI, Zeits. fur Phys. 31, 765 (1925).
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functions. Thus there is left but one set, say S, and since for it the

sum of the values of m
l
and ofms are both zero, it is a term of the type

%(seeF).
It is to be observed that, although we have found a natural place for the

Pauli principle in the theory, we have not a theoretical reason for the

particular choice of the antisymmetric system. This is one of the unsolved

problems of quantum mechanics. Presumably a more fundamental theory
of the interaction of two equivalent particles will provide a better

understanding of the matter, but such a theory has not been given
as yet.

In the zero-order scheme* which we have been considering, certain other

wise acceptable states, namely those in which two electrons have the same
individual set of quantum numbers, are prohibited by the exclusion prin

ciple on the ground that one cannot find a non-vanishing antisymmetric
function characterized by those quantum numbers. In the same way in

other schemes, in which one has no criterion so simple as the identity of the

individual sets, one wiH find certain otherwise acceptable states prohibited.

There is however one important theorem concerning this exclusion which we
can prove here, namely:

jfea symmetric angular momentum, and if in any scheme]
the state yjm is allowed for one m, it is allowed for all m.

j

This means that if we can find a non-vanishing antisymmetric function

characterized by the quantum numbers yjrn, say &quot;*F(yjw), then we can

find non-vanishing antisymmetric functions ^(yjm) for all m. The proof is

very simple; consider the equation 333:

(Jx iJy) T(yj m)=

Here Jx+ iJy is assumed to be a symmetric operator, and Y(yjm) an anti

symmetric function. Then Y(yjm-f 1) will also be an antisymmetric func

tion which will not vanish unless Jx -f iJy has a zero eigenvalue for the state

yj m. But Jx+iJy is easily shown not to have a zero eigenvalue unless

m=j, for if Jx+ iJy has a zero eigenvalue, so also has (Jx i

But

has the eigenvalue [j (j-f 1) m(m+ 1)]P, which is zero only if m=j
(or j 1). A similar consideration holds for the operator Jx iJyi which

steps the m value down.

* We shall call any scheme in which the state of a system is specified by giving a complete set

of one-electron quantum numbers as in 366 a zero-order scheme, since such states are eigenstates only
of the central-field problem, but furnish a useful starting point for perturbation calculations.
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5. Conventions concerning cpiantum numbers. Closed shells.

In the central-field approximation the state of an AT-electron atom is

specified by a complete set of quantum numbers, which consists of a list of

N individual sets of quantum numbers. Each individual set contains four

quantum numbers of the one-electron problem, usually the quantum num
bers nlm

sml
or n Ijm. Now the Pauli principle requires that all individual

sets be distinct, and it is this requirement which gives rise to the occurrence

of closed shells of electrons. In a complete set there can be only two in

dividual sets &quot;with, the same n, l}
andm

l , sincems is restricted to the twovalues

f . For a given ril there can be but 2-h 1 different values of m
fi so that

altogether only 2(21 -f 1) individual sets may have the same nl.* When a

complete set contains the maximum number of individual sets of a given nl,

we say it contains a dosed shell or amiplete shell of that type. It is to be

noticed that for a closed shell a negative value ofm
l
and ms occurs for every

positive value so that the sums of the m
l
and of the ms values are zero.

We have seen that the antisymmetry of the eigenfunction makes it im

possible to speak ofa definite electron as having a particular individual set of

quantum numbers. However, before the theory was fully developed, spectro-

scopists formed the habit of speaking of a state of the atom as involving,

say, two Is electrons and one 2p electron; and there is no harm in con

tinuing this convenient mode of expression if it is understood that in such

a statement the term *nl electron refers to the occurrence, in the complete

set, of an individual set having quantum numbers nl. In the same way we

may say that an atom has two electrons in the Is shell and one electron in the

2p shell. Here, as was done early in spectroscopic theory, we let the nl

values label the different shells, complete or incomplete.
Since the energy in the one-electron problem depends only on nl, the

energy in an unperturbed state of the central-field approximation depends

only on the distribution of the electrons among the shells, i.e. on the list of

nl values of the individual sets. This list of nl values is said to specify the

electron configuration. Then the first-order perturbation theory will need to

consider only that part of the perturbation matrix which joins states

belonging to the same configuration, and we may to the first order treat the

energy-level problem configuration by configuration. In specifying a con

figuration of an atom a notation of the following type is used:

Till Is2 2s2
2jt&amp;gt;

6 3s2 3p
6 3d2 42? } (1)

which indicates an atom (really the ion Ti+) with Z= 21, N = 20, closed Is,

2s, 2p, 35, and 3p shells, two electrons in the 3d shell, and one in the 4p.

* If we calculate this using the jm scheme: j may be I + \ or I J, the first of which has 2Z -f 2
values of m, the second 2 total 41 + 2 sets as above.
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Now the order of listing of the individual sets in a complete set does not

affect the state in an essential way, but two different orders may lead to

eigenfunctions (3
6
6) with opposite signs, i.e. with different choices of the

arbitrary phase. For this reason we must for definiteness list the quantum
numbers in a specified way. In the first place, the sets will be listed shell by

shell, all the sets of a given shell being placed together. The order of listing

the shells will in each case be specified by the order of nl values in the con

figuration designation of the type (1). Within a shell 9 we shall for con

venience adopt a standard order of listing the quantum numbers. In the

nlmgrii scheme, the sets will be listed in decreasing order ofm
l values, the set

with ms
= + i being placed before that with ms

=
J, in case both have the

same m^ In the nljm scheme, the sets will be listed in decreasing order of

m values, first all sets with j
-

1 + f , then those withj = I- \. Having agreed

on this standard order, the sets for a closed shell need not be listed explicitly,

and only the m/n^ oxjm values need be listed for the incomplete shells. In

the msml
scheme we shall use a notation of the type

Nel l52 2^2 2j)
5
3^(!+I~0-~-l4

-~i-2-), (2)

where the numbers specify the ml
values and the superscripts the m3 values

first of the five 2p electrons, then of the 3cL

6. Matrix components for S$/().*

We need to know the matrix components, in terms ofeigenfunctions based

on the central-field approximation, of certain symmetric functions of the

coordinates of the N electrons. The symmetric functions which actually

occur in atomic theory are fortunately oftwo very simple types. The first is

that in which there exists a function of the coordinates of a single electron

which is written down once with each electron s coordinates taken in turn as

the argument and the results added. Let F be such a quantity. Then we may
write &

a)

where /(i) operates only on the coordinates of the ii-h electron. It is easy to

reduce the matrix components of this type of quantity to those for the

motion of a single electron in the central field.

The matrix component (A\F\B) connecting states of the antisymmetric

type whose eigenfunctions are given by 366 is given by

P
&amp;lt;t&amp;gt;(B), (2)

where the integral means integration and summation over the 3N positional

and the N spin coordinates respectively, as in 53 .

* CONDOK, Phys. Rev. 36, 1121 (1930). These matrix elements follow also from the considera

tions of JQBDAN and WIGNER, Zeits. fiir Phys. 47, 631 (1928) on second quantization.
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When we are considering only antisymmetric states, since all the in

dividual sets of quantum numbers are distinct, it is immaterial whether we

regard P as a permutation of electron indices relative to quantum numbers,
or of quantum numbers relative to electron indices. The latter point of

view will usually be the most convenient. We may think ofP as an operator

acting on the quantum number ofeach electron and turning it into a different

quantum number. We can thus denote the quantum number of the ith

electron in
P&amp;lt;j&amp;gt;(A) by Pa*.

The summand in (2),

...
f*APcf)fuAP b&amp;lt;)...

(%
Jt J N

(3)

contains integrals simply of products of eigenfonctions of single electrons in

every place except the ith . Therefore it vanishes unless (Nl) of the in

dividual sets in A agree with those in B, since the non-vanishing of the

summand requires that

P bl= Pa\ P b*= Pa\ ..., P bN = Pa*, (4)

except that P b1 need not equal Pa1
. It follows therefore that all matrix

components (A\ F\B) of a quantity of the type F vanish ifA and B differ in

regard to more than one individual set of quantum numbers.

Continuing the calculation, we may suppose that A is the same as B
except for one individual set, which is the set ak of A when arranged in

conventional order. Denote by B the set obtained when the individual sets

ofB are arranged in the order

... a

This will not in general be the conventional order for the set B but we can

pass to the set B by an \ ,
[
number of interchanges. We then have

O(jB){}*( ), and hence (A\F\) ={}(A\F\B ). (5)

We may calculate (-4) F\B
r

) quite simply. In order that the summand

corresponding to (3) should not vanish, P must be the same permutation
as P, and must be such as to put the unmatched individual quantum num
bers with the iih electron s coordinates. Since Pf

is the same as P the sign

of each term in (2) will be positive. For a given i there are (Nl)l P s

satisfying this condition, so we obtain

for the sum over P and P in (2). The same argument applies for each value
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of i from. I to N and gives the same result, since a definite integral does not

depend on the name of the integrated argument. The summation over i thus

multiplies the above result by N, giving a total of Nl, which cancels the

l/Nl of (2). Hence we obtain finally

(6)

In the case of the diagonal element (^tjjF|x4) 3 the argument is similar.

Here P f must equal P or the summand corresponding to (3) vanishes. Hence

N\ i p j
l *

Now of the permutations P there will be (N 1) ! for which Pa =a&amp;gt; (J
= 1,

..., N). Hence on summing over P we obtain

N t*

(7)~XX f*,(oO/^)- SA i j J i 5=1 J

since the value of the integral is independent of i.

To summarize the matrix component (A\F\B) of the quantity

(a) vanishes ifB differs from A by more than one individual set;

(b) has the value
(A\I\B) = (a

fc

|/|6*) (8)

ifall the sets inA agree with all those in B except that ak ^ b*. The sign ispositive

or negative according to the parity of the permutation which changes the con

ventional order ofB into one in which sets in B which match those inA all stand

at the same places in the lists ;

(c) and if E=A, the diagonal element is

(A\F\A)=%(af\f\a?). (9)
i~I

This completes the reduction of matrix elements of F in the .^-electron

problem to those of/ in the one-electron problem. From the form of the

results it is evident that if/is a diagonal matrix in the one-electron problem,

then F is diagonal in the ^-electron problem. Thus the sums of the z com

ponents of spin and of orbital angular momentum are each represented by

diagonal matrices in the JV-electron problem if the representation is based

on the rilmri scheme.

7. Matrix components for 2^ f g(i, j) .

The second type of symmetric function which occurs in atomic theory is

that in which one has a symmetric function of the coordinates of two elec

trons, g(i}j) = g(j, i) which is summed over all pairs of electrons. We suppose
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that i^}, for terms of the type S^(f 5 i), if present, constitute a quantity of

the type F whose matrix components have already been calculated. It will

now be shown how the reduction from the N- to the 2-electron problem can

be made in this case.

Corresponding to 66 i, a quantity 6 is defined by

G= i g(ij). (I)
i&amp;gt;j=i

The most important quantity of this type is the Coulomb-repulsion term

which occurs in the Hamiltonian 1 6 1, in which ?(^J) = 2
/%. The matrix

component of G joining the states A and B becomes

f
f &

;(Pa*) fy
JiJj

where the continued product of delta functions contains a term for each

index except i andj. In order that there be some non-vanishing terms in the

expression one sees that B can differ from A by at most two of the individual

sets. We shall have three cases, those in which B differs from A by two sets,

by one, and by none.

Considering first the case in which A and B differ by two individual sets, let

us deal with the eigenstate B in which (N^2) of the sets are matched with

those in A with the latter in conventional order:

A: a1 &2
... ak ... of ... a*

Bf
: a* a2

... bk ... If ... a*.
(3)

ThenB is generally not in its conventional order, sowe shall have to multiply

by plus or minus one according to the parity of the permutation from the

conventional order for B to this order to obtain the correct sign for the

matrix component.
Consider now the expression (2) for a definite i and j. Since we deal with

a double integral we see that for each P there are two P&quot;s which contribute

non-vanishing terms to the surnmand. We must have P such that Pa i= ak

or of and Pa 7

&quot; = a1 or ak. Then P must agree with P with regard to the (N 2)

electron indices other than i and^*. There are (N 2) ! of the P s for which

Pa1
&quot; = a* and Pa3 = at* For each ofthese we get two terms : first we may have

P bt=&c

t
P W= W and P r

otherwise the same as P; then P ss P, hence this

term is positive second, we can have P b*= V and P W= bk but P otherwise

the same as P; here P and P differ by one interchange, so this is a negative
term. Similarly there are (N2)l of the P s for which Pa*= a1 and Pa? = ak .

For each ofthese we can have P == P, giving a positive term, and P differing
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from P by one interchange, giving a negative term. Altogether then the

summation over P and P gives

Since these terms are definite integrals, the first and third are equal and the

second and fourth are equal. Moreover, the sum over i, j merely multiplies

by thenumber ofterms in the sum, which isN(N I
)/2 5 so altogetherwe have

(A\G\B)

=

(4)

the sign being determined by the parity of the permutation necessary to

change the conventional order of into that of (3).

Next ifB differs from A by but one set, we can take a permutation on the

conventional order in B which will match up corresponding individual sets

with the conventional order in A,

A: a1 a2 ... ak .,, ay
,

B : a1 a2 ... bk ... aN .

^
By arguments similar to those already used&amp;gt; it is then easy to show that

(A\Cf\B)

=

(6)

in which a runs over the
($&quot; 1) individual sets that are common toA andB.

Finally, the diagonal element may be shown by similar arguments to be

given by

(A\0\A)

In (7) we shall call the integrals with positive sign direct integrals and those

with negative sign exchange integrals.

If g(i,j) is independent of spin, then in the nlm^n^ scheme the sum over

the spin coordinates a
i , 0$ implied in the / 1 sign in (7) may be carried out at

once. This gives a factor unity on the direct integral and a factor S(m% , mj)

on the exchange integral, so we have exchange integrals only for electrons
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of like spins. Inspection of (4) and (6) shows tliat if g(i,j) is independent of

spin there are no matrix components connecting states A and B if these

differ in regard to their 2ms . This is consistent with the fact that in this case

G commutes with Ss , the z component of resultant spin.

8. Matrix components of electrostatic interaction.

The most important quantity of the type considered in the preceding
section is the Coulomb-repulsion term

Q= I q(i,j)= S e/r&amp;lt;,

i&amp;gt;j=l i&amp;gt;j=l

which occurs in the Hamiltonian of the many-electron atom. We wish now
to carry out a computation of the integrals involved in this problem in the

nlm/Yil
scheme. The most general integral occurring is one in which four

different individual sets, a, b s c, d, are involved. Hence we shall have to

OLlfII IS i&quot;f^ /* /* 2

(ab\q\cd)=- %(a) 2(&) u^(c)u^(d). (I)
J J rI2

The single-electron eigenfunctions are given by 452, which in the present
notation becomes

a

Thus (1) can be factored into the product of a sextuple integral over the six

positional coordinates and a double sum over the two spin coordinates

SS(al3 m)S(al5 mpS(a^^ (2)
&amp;lt;7icr2

so the spin components of a and c, and of b and d, must be the same or the

integral vanishes.

For farther progress we make use of the relation

! 1

\ 2^2 COSO)

where o&amp;gt; is the angle between the radii vectores of electrons 1 and 2 from the

origin. This can be developed in a series of Legendre polynomials

in which r
&amp;lt;

is the lesser and r
&amp;gt;

the greater ofrx and r2 . Therefore the part of

(1) independent of spins can be written

.

\ I I
f

J J J J

f) sin^ sin&amp;lt;9
2dd^^dpa . (4)
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The second factor, depending on the spherical harmonics, can be further

expanded by making use of the addition theorem (4
3
22). This expansion

permits us to write the angle factor occurring in the kth term of (4) as

-^- S ri(k m) O^Z* mf) 9^1 mc
t )
sm91 dd^ f ^(

2&-{-lm=_fcjo Jo
ff

.

Joo o

The 9 integrals can be evaluated at once. They give

S(m, mf-mf) S(m 3 mf- m\) .

2?T

Hence in the summation over m everything vanishes unless

that is 3 there are no matrix components connecting states which differ in

the value of the z component of the total orbital angular momentum. This

is consistent with the commutation of Q with Lz . For states which do not

differ in this value, only one term ofthe sum overm remains, namely that for

m=mfml =mf m\. (5)

When this condition is satisfied, the angle factor reduces to

ck(l
a
mf ,

l
c
mf)

ck (l
d
mf , V&amp;gt; mf),

where c is defined by the equation

(6)

This expression is not symmetric in lm
l
and Vm^ but from 4318,

^(ImtJm^^l^r^c^l m^lmt). (7)

If we now introduce the abbreviation

^nW) R2(nW)dr^ (8)

we obtain as the final value of our matrix component

S c\l
am,lcm$c

k
(l
d
mf,l

bm$Rk(nW (9)*

k=\m\

The range of k may equally well be written from to oo, since the ck vanish

identically for Jc&amp;lt; |m|.

The values of the Mk here depend on our initial choice of central field and

hence must be calculated independently for each different choice. But the
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c s are essentially definite integrals of three associated Legendre poly
nomials and may be calculated once for all. Gaunt* lias given a general

formula for the integral ofthe product ofthe three functions Q (I m), Q(l m ),

Qty m+m ), for m^Q, m ^0. Our integral is seen to be reducible to this

form by means of 43 18. In the first place ck vanishes unless 1% I, and l
f

satisfy

the so-called triangular condition, which requires that Jc, I, and V equal the

sides of a triangle of even perimeter. Expressed analytically ,
in order that

CA have a value different from zero, k must satisfy the conditions

(g integral)
l j

These conditions limit the range of Jc to a few values in any practical case

and serve to limit the seemingly infinite series occurring in (9) to the sum of

a very few terms.

Gaunt s formula gives, for m ^ 0, m &amp;gt; 0, 2g= I -f V + 1&quot;,

rJo
-f

t -m-m-- +m m + -m- ( )

where, in the summation, t takes on all integral values consistent with the

factorial notation, the factorial of a negative number being meaningless.

This formula cannot be summed except in certain special cases. Because of

its cumbersome nature, a table of values is needed for actual computations.
Table I 6 gives the values of the c s for s, p, d, and/ electrons.

The particular matrix elements which occur in the calculation of the

diagonal element of Q recur so frequently that it is convenient to introduce

the special notation:
(
a b\q\ab)

= J(a,b)

According to (9), we may write

J(a 3 6)= S ak(l
a
mf,l

bmb)Fk(nala,nblb )

(13)

and K(a, 6)
= S(m,m*)

k

Here ak and bk are defined in terms of our previous ck by
ak(l

a
mf ,

V&amp;gt; m\ )
= ck

(l&quot;mf ,
l
a
mf) ck(l

b
m\ ,

l
bmb

)
]

bk(l
a
mf ,

l
bmb

)
=

[c
k
(l
a
mf ,

V&amp;gt; m*)]
2

, j

* GAUNT, Trans. Roy. Soc. A228, 151 (1929) in particular, equation (9), p. 194.
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wMle Fk and Gk are special cases of the Rk of (8), namely
Fk

(n
a
l
a

, nb
l
b
)
= Rk

(n
a
l
a nb

l
b

, na

r /* y*

J o J o ^j
1 1 2 1 2

a
l
a

, nb
l
b
)
= Ek

(n
a
l
a nb

l
b

, nb
l
b nala )

r
k

f o J o
r&amp;gt;

/*QO /vi y*
= 2e2 $rJ -jSTi^ifa

Jo Jor^
(15b)

Tables I 6 and 26
give the values of bk and afo for s, p, d, and/ electrons. To

avoid the occurrence of fractional coefficients for the JPs and &amp;lt;?*s in the

evaluation of J and K matrix components, we define

where Dk is the denominator occurring in Tables I6 and 26
. The formulas of

the succeeding chapters will usually be expressed in terms of Fk and Gk .

It is seen that the R*s which are obtained in taking a matrix element

between two states of the same configuration will always reduce to these

F y

s and &*s. For a pair of equivalent electrons, F*s and G s of the same k

are equal: Fk
(n

a
l
a
,nala) = Gk(nal

a
, nal

a
)
.

We also note, from its definition, that Fk is essentially positive and a de

creasing function of k. Although from its definition we cannot make such a

statement, we shall find Gk to share these properties when we calculate its

values in special cases.

We shall use later the fact that

I(n
a

l
am^mf,nb

l
bmbmb

1 )
= I(n

a
l
a m^ (16)\ O* Ot v 3 tr

J if J / \ /

where I equals / or K.

9. Specialization for closed shells.

If we are dealing with configurations involving closed shells of electrons,

certain simplifications in the matrix components follow which are of im

portance for atomic theory. This case will now be investigated.

First, let us consider a diagonal element for a quantity of the type F.

In 6S9 the summation extends over all the individual sets of quantum
numbers. Consider separately the sum over the 2(2Z-h 1) individual sets

associated with the nl shell. This has the value

+i +* ^ f 00 r^f 2

S S S
m= |mj= I u Jo Jo Jo

3m
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If/ is a function of the coordinates r #9 a only and not an operator, tMs

becomes

Jco

/?r /2

oJoJo

Now the sum in parentheses has the value (21+ l)/4rr; this follows from the

addition theorem 4322 by writing l
=

2 ,^=
&amp;lt;p2 , o&amp;gt;

= 0, and Pj( 1 )
= 1 . Hence

our final result is

irp^ (1)

that is, the matrix component ofthe function/averaged for all directions in

space, calculated as if the eigenfunctions of the states in the nl shell were

TABLE le . ck(lmlf
I mi) and &*(Zmz ,

I mi).

We write ck= Vx[DJe ,
where Dk depends only on I and I . In the table are listed only the sign

preceding the radical and the value of a;, Dk being given at the head of each column. Since

&*=(c*)
2
, 6*= +z/Dk . Note that c*(J j|, lml)=( - l

ck{lmlt
I ml) for l+l odd
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TABLE I6 continued.

I ml) for l+l even

spherically symmetric, and multiplied by the total number of electrons in

the shell.

Let us consider next the diagonal elements of the quantity
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T4JJIJ326
. a*(Zmz,ZX )-

The value of this coefficient is independent of the signs ofm
l
and mi. As in the preceding table,

we print the common denominator of several related values but once at the beginning of each

group. For I= 0, a
a
(0 0, V ml) - S(, 0) for all V m{; for k-Q9 a(l mtt I mi)

- 1 for all values of the

arguments; in the table we give values only for I, I , & &amp;gt;0. Note that

which represents the mutual Coulomb repulsion of the electrons. This

element is given by the expression (cf. 767 and 8612)

(A\Q\A)= S \\v1(a
k
)^z(a

f

)q(l i 2)vl(a
k
)vz(a

i

)drIdT2

N
V r 7Y7 /\ W/Jjt 4\1
4~A It/ ( A,

j ll 1 JjL ( A/j fJJj

where dr=sin8drd8d and
i?(&amp;lt;z)

is the spin-free eigenfunction

(2)

Consider now that part of the sum in (2) which results when ak has the

fixed value nlm^ and a* runs over all the individual sets of the nT closed

shell. We do not assume nl to be different from ril
f

. JInl ril there occurs

one term in this sum, that for which af=zak
&amp;gt;

which does not occur in (2); but
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the summand of (2) is seen to vanish, for ak == a1 so we have introduced only

a vanishing term. This sum is, in detail,

S S
f&quot;

f
J2(i, 2) Rl(nl) Rl(ril ) \(lm^ i(Z mJ) (Z^dr^

m^m^-Z LJ J

l, 2) R^nl) R^(n
f

l
f

)
R2(nl) R2(n l

) O^Zm,)

r )(B^) 2(Zm;)
&amp;lt;X&amp;gt;2(m,) 2(Z wj)$2(mJ) ^r^rJ . (3)

The summation overms gives a factor two in the first term and a factor one

in the second. The summation over mj may be carried out by the use of the

addition theorem (4
3
22). This gives for our sum

) f
jj

-
I |g(l,

2) R^nl) R^nT) R^nl) R2(n l
f

) Q^lm^^)

(2r

-f i\

~^
-

j

Pr (coso&amp;gt;) (Zrjdrg . (4)

e2 r*
Now writing g( 1, 2) = = e2S -^~

&quot;&quot;r!2

each of these integrals can be written as a sum over /c of integrals involving

62 (r^/rf
1

&quot; 1

) P^oosto) in place of g(l, 2).

In the direct integral one may choose a new coordinate system for the

variables #2 &amp;gt; 92 ^^ ^e direction $x , 9X as pole, in which case a&amp;gt;
= #2 . Then

all terms vanish except for /c= 3 in which case the integration over $2 , 92

gives a factor 4?7. The integration over 6^ , 9Xmay then be performed directly ;

giving for the value of the direct integral (cf. 86
15)

2(2Z
/ + l)!

f

(wZ,ftT). (5)

The exchange integral, on using the same expansion, becomes

f f r
&amp;lt;

&quot;icjjr*&quot;
1M 1%

(2Z

i 1\
I Pr(coso) PJcosoj) (Zr^Tg . (6)

To evaluate this we expand the product Pr (coso&amp;gt;) P^COSOJ) in a series of

Legendre polynomials PX(COSO&amp;gt;).
This we may do since the P^(coso&amp;gt;) form a

complete set of functions in the interval to IT. The coefficient -

in this expansion is given by

*1 rP^coMPHeosco)
- .- 2A+1

2 Jo
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where we introduce for the integral of the product of three Legendre
polynomials the notation

J
Pw(cos0) PJcos0) Pw(cos6) smd d9= Cuvw . (7)

o

Cuvw is expressible in terms of the c s of 866 by the relation

or the corresponding forms obtained by permutation of uvw, since G is

symmetric in the three indices. This integral has the value*

C _~

where 2g = u+ v + w. The integral vanishes unless the triangular conditions

are satisfied (cf. 86 10).

When we substitute the relation

2A + 1Pr(cosco) PK(cosco ) = 2 CXl,K PA(coso&amp;gt;),

A ^

the exchange integral (6) becomes a double sum over K and A. In each sum-
mand the dependence on #2 , 92 is through the factor

2(Zmz )&amp;lt;I&amp;gt;2(mj) PA(cosco).

Expanding PA(COSOJ) by the addition theorem, we find that the integral of

this over the whole range of 2 , 92 vanishes unless A=Z, in which case it has
the value

The integration over 6^ , 9X can now be performed directly to give simply a
constant factor. Thus we are left with (cf. 86

15)

(10)

for the value of the exchange integral.

Hence the contribution (3) of the nlm/n; electron and the n l
f

closed shell

to the diagonal element of Q is given by

(2P + 1) [2 F*(nl, n V)
-
J S CIUK G*(ril9 ril )]. (11)

K

The most striking and important property of this result is that it is entirely

independent of the values ofm
l
and ms .

We may now obtain the contribution to (2) of all pairs of electrons in the
same nl closed shell by multiplying (11) for nT = nl by the number 2 (2Z-f 1)
of electrons in the shell, and dividing by two since each pair of electrons is to

be counted only once. This gives for the contribution to the diagonal
*
HOBSOK, SpTierical Harmonics, p. 87;
GAUNT, Trans. Boy. Soc. A228, 195 (1929).
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element (A\ Q\A) of all pairs of individual sets belonging to the same closed

shell the value

(21 -hi)
2
[2 F(nl3 nl)

-
JS CUK FK

(nl, nl)]. ( 12)
K

Similarly if there is more than one closed shell in the complete set A there

will be terms in the sum in which k refers to the closed shell nl and t refers to

the closed shell n l . The contribution of such terms is

2(21+1) (21 + 1) [2 F(nl, ril )
- JS Vx G(nl, * ! )]. (13)

K

10. One electron outside closed shells.

We are now in a position to investigate the nature of the approximation
which permits us to treat the spectra of the alkali-like atoms as arising from

the motion of one electron in an effective central field as was done in 85 . We
consider for this purpose the configurations in which all the electrons but

one are in closed shells. The one electron not in a closed shell will be referred

to as the valence electron.

The first approximation to the energy of any configuration, according to

82
5
is given by the roots of a secular equation in which appear the matrix

components of the perturbation energy taken with regard to all the states

of the configuration. We label the states by a set of quantum numbers

for the closed shells and an individual set ?zJmsmz
for the valence electron.

The degeneracy is only in m
l
and ms . Since for each closed shell Sm, and

Sms vanish, the Sm^ and Sma for the complete set is just the m
l
and

ms of the valence electron. But we have seen that the electrostatic inter

action energy is diagonal with regard to Sm
r
and Smg , so there are no non-

diagonal matrix components due to this term in the Hamiltonian.

As to the spin-orbit interaction, it is a quantity ofthe typeF, sothe results

of 66
apply. The conventional order of listing quantum numbers will make

the valence electron in set B come at the same place in the list of individual

sets as it does in set A, so the sign in 668 is positive. For the configurations

under consideration it is possible for -B to differ from A only in regard to the

ml
and ms of the valence electron, so the non-diagonal element that occurs is

just what would occur for the spin-orbit interaction if there were but one

electron in the whole atom. The diagonal elements of the spin-orbit inter

action are given by 669 where, as in 45
, / is of the form ftrJLfSi . The

diagonal matrix components of this quantity are of the form ttnimsmi
f r a

single electron in the state nlms ml
. The sum of such quantities for all the

electrons in a closed shell is obviously zero. Therefore the only term left in

applying 669 is that contributed by the valence electron, which is exactly

what it would have been if the others had not been there, so the whole spin-

orbit interaction is as in the one-electron problem.
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Turning now to the diagonal elements of the electrostatic interaction we
use the results of the preceding section. For each closed shell there will be a

contribution of the form 9612 and for each pair of closed shells there will be

the contributions of the form 96 I3. These two parts refer to the interactions

of the electrons contained in the closed shells and so are the same for all

states of the atom under consideration. Therefore they do not affect the

relative positions of the different energy levels.

The remaining part of the diagonal element of Q is the part which

depends on the quantum numbers ofthe valence electron. For this part k in

767 refers to the valence electron while the index t runs over all the other

individual sets. This gives a sum of contributions of the form 96 11 for the

interaction of the valence electron with each closed shell. The sum is in

dependent of the msml
of the valence electron.

From the definition of F(nl,nT) the direct integral representing the

interaction of the valence electron with the nT shell is

2 (2V H- 1) f

*

f

a

El(nl) S%(n V) dr^r* .

Jo Jo f&amp;gt;

The integration with respect to r2 can be carried out to give

(1)
rl J fi

so the direct integral can be written in the form

In other words the direct integral is just the interaction of the valence

electron with the classical potential field due to the spherically symmetrical

charge density 2 (2V + 1) R*(n l )/r*.

The exchange integral has no such simple interpretation, which is con

sistent with the fact that it has no classical analogue.
The situation is thus as follows. To treat an atom with one electron outside

closed shells we may assume all electrons to move in an effective central

field U(r). The one-electron central-field problem has to be solved for this

field to find the unperturbed energy levels and radial eigenfunctions. Then
the ^-electron problem will be like this one-electron problem so far as the

spin-orbit interaction and doublet splitting is concerned. It will be unlike

it in that states will occur only for which the valence-electron quantum
numbers are not those used up by the closed shells. The first-order per
turbation (except the spin-orbit terms) will then be, when the valence

electron is in an nl state, a sum of terms which it is convenient to regard in

three groups.

First, there are the terms which refer only to the closed shells and which

are therefore common to all of the states of the atom and so do not affect

relative energy levels. These include not only a term like 9612 for each closed
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shell and one like 9613 for each pair of closed shells, but also for each closed

shell a term like 96 1 which, according to 164, has the special form

2 (2V 4- 1) fT- U(r)
-^1 R*(nT)dr (3)

for the nT shell.

Second, there are the terms which are integrals of the form of a function

of r multiplied by the square of the radial eigenfunction for the valence

electron. Altogether they are

f72 -

(4)

focr- f7p2 -|

J o ^
-

U(r)~ + X FnT(r)
J

where the quantities Vn &amp;gt;r(r) are defined by (1) and the summation is over

the n V of all the closed shells.

Third, there are the terms of the exchange integrals between the valence

electron and the electrons in the closed shells. In this category there is one

sum like the second part of 9611 for each of the closed shells.

The doublet structure has been shown to be the same as in the one-

electron problem, so that it is simply the combined effects of terms like (4)

and the exchange integrals which determine the relative positions of the

different terms. These results give us a little more insight into the way the

approximation depends on the choice of the function U(r). The value of (4)

is a functional of U(r) of a rather complicated sort; it depends on U(r) not

only explicitly but also in that the S(nl) depends on 17(r) and so also do the

Vn &amp;gt;i&amp;gt;(r) through involving the R(ril
r

). A good choice of U(r) would be one

that makes (4) have a small value for as many ofthe values ofnl as possible.

Now (4) is ofthe form which would arise if one were trying to approximate
to the solutions for the potential energy

jj& ir-t TT , . t ^+SFBT(r) (o)
nT

having started with the known exact solutions for the field U(r). This

suggests that one might take (5) as a new U(r) for a second trial and then

determine the eigenfunctions which belong to it and in turn calculate new

Vn &amp;gt;i&amp;gt;(r)

from these as a means of approximating to the best potential-energy

function. Detailed consideration of methods of obtaining U(r) and results

based on special central fields will be given in Chapter xiv.

11. Odd and even states.

In the course ofthe developments which follow we shall see that of all the

ordinary quantum numbers, only those referring to the total angular

momentum (/ and M) are rigorously constants of the motion for a free

atom. There is, however, another classification of states of the atom which

is rigorously a constant of the motion. Each state may be characterized

rigorously as even 5
or

c

odd/ a fact of great importance in spectroscopy
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in that all the dipole radiation of the atom is concerned with transitions

between states of opposite parity.

Let 3* be an observable* defined by the result of its operation on a

Schrodinger $ function of the coordinates xi yi zi ai (i=l,...,N) of the

electrons as follows :

From this definition it is easily seen that with an observable which is a
function of the position vectors ris the momentum vectors pi9 and the

angular momenta JL4 and Si3 8? has the following
*

commutation property

PftrapttLitSj^ft-rt, -pi ,Li9 SJ0 . (2)

Now the Hamiltonian for the free atom is a function only ofrf , tyr7
- 9p* 9 Li9

and Si and therefore commutes with 0&amp;gt;:

[0&amp;gt;,H]
= 0. (3)

Hence stationary states of the atom may be taken also as eigenstates of 0*.

From its definition it is clear that ^2 is the identical operator and so the

eigenvalues of& are 1 (cf. Problem 1, I 2
). States belonging to the eigen

value 4- 1 are called even states, to the eigenvalue 1, odd.

We shall now see that the eigenfunctions we have built up for the central-

field approximation are also eigenstates of 0*. It is evident geometrically
that in polar coordinates

Hence if the function is of the form of a radial function multiplied by a

spherical harmonic only the latter is affected by &. On O(m) the operation

produces
^&amp;lt;D(m)

= eim^^(m) = (
- l)O(m),

while on 0(2m) the result is

so that the whole effect on any spherical harmonic oforder I is multiplication

by (
-

l)
z
. Then if^ is applied to an eigenfunction like 366, the eigenfunction

is multiplied by ( 1)
2Z

. Hence the state is even or odd according to whether
22 is even or odd. This is the origin of the even-odd terminology for the

eigenstates of 8P belonging to 1 respectively.
Since & anticommutes with the electric moment P defined in 4493 it

follows from 2223 that the electric moment can have non-vanishing matrix

components only between states of opposite parity. Similarly %l and M
commute with & and so will have non-vanishing matrix components only
between states of the same parity.

* Real because we shall shortly find that tlie eigenvalues are real and the eigenstates orthogonal,
or from the definition because clearly

(notation of 3s).



CHAPTER VII

THE RUSSELL-SAUNDERS CASE: ENERGY LEVELS

We are now prepared to build on the results of preceding chapters by

studying atomic configurations having more than one electron outside

closed shells. For such configurations there are generally a large number of

energy levels giving great complexity to the spectrum. In the first approxi-

(Ze*
\

J7(ft.)L
r
i 1

contribute quantities which have the same values for all levels belonging to

a configuration. Therefore they do not affect the relative position of the

levels of any one configuration. Because of this fact their consideration is

&quot;best incorporated with the general study of the central-field problem which

we take up in Chapter xiv. The Coulomb interaction of the electrons,

E e^fr^ ,
is different for different states of the same configuration and thus

i&amp;gt;j

serves partly to remove the degeneracy of the states belonging to the same

configuration that exists in the simple central-field model of the preceding

chapter. This is also true of the spin-orbit interaction terms, Slfo) LjSi .

i

Experience shows that in many atoms the spin-orbit interaction is small

compared with the Coulomb interaction. For this reason it is useful to

develop an intermediate approximation in which the Coulomb interaction

is taken into account but the spin-orbit interaction neglected, or treated as

small compared with the Coulomb interaction. This approximation is called

the Russell-Saunders case in recognition of the pioneer work of Russell and

Saunders* in which the main features of the theory of complex spectra were

first recognized. In this chapter we study the scheme of levels belonging to

a particular electron configuration. The next chapter is concerned with

methods of finding the eigenfunctions for this approximation in terms of

the zero-order functions for the central-field problem. Chapter ix com

pletes the general study of the Russell-Saunders case by developing the

theory of line strengths in this approximation.

The theory covered in these three chapters, while quite general, will be

in a form which is suitable for actual calculation only for configurations

involving a very few electrons outside ofclosed shells. Chapterxm will show

howthe theorymay be adapted to the calculation ofconfigurations involving

almost closed shells, i.e. shells with just a few electrons missing.

* EUSSELL and SATTNDEBS, Astrophys. J., 61, 38 (1925).
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1. The L^-coupling scheme.*

The Hamiltonian without spin-orbit interaction terms commutes with all

components ofthe resultant orbital angular momentum L=L 4- JL2 + . . .+LN
and of the resultant spin angular momentum S= SI + S% + . . 4- SN i this is

most directly seen from, the considerations in the first part of 83
. Hence it

commutes with all components of the total angular momentumJS+L.
Therefore this Hamiltonian will have no matrix components connecting

states labelled by two different precise values of S2
, JL

2
, J*y Sz ,

Lzi or Jz .

We introduce quantum numbers S, L, J, MB ,
ML ,

M according to the

scheme S2/ = S(^+1)^2 S^M/i
(I)

for convenience in labelling states which correspond to precise values of

these observables. Only four of these six observables are independent; one

usually takes either the set SLMSML or the set SLJM to label the energy

states. From 338 we obtain the important result that in the 8LMSML

scheme the energy is independent of Ms and ML . Since a definite state

SLJM is a linear combination of states SLMSML with variousM8ML but

the same SL, this has as a consequence that in the SLJM scheme the

energy is independent of J and M.
The representation of states developed in the preceding chapter is based

on a set of states specified by a particular set of 42V quantum numbers. We
have now to transform to a new set of states in which the energy is diagonal

to a certain degree of approximation. In whatever manner this is done each

of the new states will likewise need to be specified by 4JV quantum numbers,

for this is the number of degrees of freedom of the system. In the first

approximation of the perturbation scheme we neglect matrix components

of the Hamiltonian which connect states belonging to different configura

tions. Therefore to this approximation the energy states can be labelled

precisely by the configuration. If there are -2V electrons not in closed shells

andNNr

in closed shells, the configuration label amounts to a specification

of (NNf

) -f 2N quantum numbers, for all the quantum numbers occur

ring in a closed shell are prescribed and the nl values of theN individual sets

out of closed shells are also prescribed. Therefore in addition to the con

figuration label we need 2N more quantum numbers with which to label

states.

* In accordance with the recommendations of RUSSELL, SHENSTONE, and TUK;NER fPhys. Rev.

33, 900 (1929)], we shall use capital letters S, L, J, M8 , MZ, M for quantum numbers which refer

to tlie resultant momenta of several or all of the electrons in an atom, or ion; the corresponding

small letters will be used only for quantum numbers which refer to a single electron.
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In case N = 2 the four quantum numbers needed are provided by SL and

either JM or MSML . For N &amp;gt; 2 these are not in general sufficient and we

shall need to find additional quantum numbers in order to give a unique

specification of the states. This can be accomplished in many cases
(
28

) by

introducing the concept of parent terms.

Any set of states in which JL
2 and *S

2 are diagonal will be referred to as an

LS-coupling scheme. On the older vector model of the atom the orbital

angular momenta of the individual electrons were regarded as coupled

together to give a resultant orbital angular momentum, and the individual

spins were coupled to give a resultant spin. Then the S and L which resulted

might be coupled under certain circumstances to give a resultant angular

momentum J for the whole atom.

A set of (2j8+l)(2i-hl) states belonging to a definite configuration

and to a definite L and 8 will be called a term. If we are working with an

SLMSMLscheme, then \ML \
&amp;lt;
L and \MS \

^ S, giving(2S4- l)(2i+ 1) states

in the term. Working in an SLJM scheme, we have
|
$ LJ ^ J ^ $ 4- and

\M \
^ J for each J; this counts up to the same total number of states in the

term. The quantity 28+ 1 is called the multiplicity: it Is the number of J

values and hence the number of levels that occur in the termjL^S. Even

if L &amp;lt; S we ascribe to a term this multiplicity and say that its multiplicity is

not fully developed. The notation for a term, which has become standard,

is to write $, P,D, F, ... fori=0, 1, 2, 3, ... and to write the numerical value

ofthe multiplicity as a superscript at the left of the symbol for the L value.

Thus 5P C quintet P ) indicates a term in which = 1 and 8=2. This is in

accord with the usage of 45 for the doublets in one-electron spectra. If

more than one term of the same kind occurs in a given configuration, we

shall for the present distinguish them by an arbitrary extra letter as a 5P,

6 5
P, . .. ; in 28 we shall examine the possibilities of a more significant way

of characterizing them.

We have nowto consider theproblem of determiningwhich terms occur in

a given configuration.* By the methods of the preceding chapter we can

write down theN individual sets comprising each complete set which occurs

In the configuration. Each complete set will consist of the individual sets

for electrons both in closed shells and out. As it will shortly appear that the

number and nature of the closed shells is without effect on the following

discussion, we shall in what follows use the word configuration to refer to the

class of all configurations which have the same ril values for those electrons

not in closed shells.

Having made a list of the complete sets which belong to a configuration

* PAULI, Zeits. fur Hiys. 31, 765 (1925);

GOUDSMIT, ibid. 32, 794 (1925).
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we may classify them at once by the values of Emj=ML and Ems
=Ma . To

make the argument concrete let us consider np n p (=pp), the configuration

in which two p electrons with differing n values occur outside closed shells.

It will be convenient to use the notation of 562 for the m
l
and ms values

of the two electrons, the superscript sign indicating the ms value

for the individual set whose m
l
value is given by the integer to which it is

attached. The resulting table of complete sets for pp classified byML and

Ms values is

(2)

Because of the occurrence of a state forML
= 2 and M8

= 1 there must be a

term having the values L- 2 and 8=1, that is
3D, and this will have a state

in each cell ofthe table. Of the two states in the cellML = 2 andM8
= 0, only

one is accounted for by the 3D term, so there must be a 1D term to account

for the other. This accounts for all states with ML = 2. Similarly from the

presence of two states in the cellML
= 1 and M8

= 1 we infer the occurrence

of a 3P term. Continuing this process we see that the terms are 1
/S,

3
$,

1
P,

3P, W, and 3D.

These terms are the same as one finds on the vector-coupling picture

according to which 8 as the resultant of two spins each of magnitude one-

half can have a value zero or unity, and L as the resultant of two orbital

angular momenta each of magnitude unity can have the value zero, one,

or two. However, the vector-coupling picture does not tell us which of the

terms are eliminated by the exclusion principle in case the configuration

involves equivalent electrons.

Let us see what effect the exclusion principle has in the case just con

sidered if the n s of the two p electrons become equal, that is, for the con

figuration p
2
. We have to rule out all complete sets in which identical in

dividual sets occur, and must count but once sets which are now the same

except for different order of listing of the individual sets. From 461 we see

that the exclusion principle excludes or permits whole terms so that its
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operation does not spoil the possibility ofsetting up an i/S-coupling scheme.

The MSML table now is

(3)

so the terms are *$,
3P and 1D. A total of 36 states for pp is reduced by the

exclusion principle to 15 forpz
.

Similar tables for other configurations may be made to find the terms

occurring, although for several electrons outside closed shells the tables

become quite extensive. Because of the symmetry which obtains it is

necessary only to construct that part of the table which corresponds to

ML ^0 and Jfg ^0.

2. Term energies.

Now let us calculate the first-order perturbation energy for the terms of a

given configuration in the approximation in which we neglect spin-orbit

interaction. There are no matrix components connecting states of different

ML and M& \ therefore the secular equation for the whole configuration

factors into a chain of secular equations, one of which is associated with

each value ofMSML . We make use of the diagonal-sum rule (2
2
21) which

states that the sum of the roots of a secular equation is equal to the sum of

the diagonal matrix components occurring in it. Since all the levels of a

term have the same energy, this rule allows us to write a set of linear equa

tions, one for eachMSML cell, equating the sum of the energies of the terms

having states in that cell to the sum of the diagonal matrix elements of the

perturbation energy taken with regard to the complete sets in that cell. If,

for brevity, we write 3D for the first-order energy of the 3D term, and write

(1* 1+) for the diagonal matrix element of the Hamiltonian associated with

this complete set, we obtain, for pp,

-1+1+)
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and additional equations from the remaining cells winch are not needed

except as checks in actual calculation.*

From these equations we readily solve for the term energies in terms of

the diagonal matrix components:

l+)-(l+l+) (1)

l+)-(l+l+) ? etc.

Corresponding calculations for the configuration p* give the formulas,

analogous to (1),

i = (l+l-) *P=(1+0+)
i/S=s

(l
+ -l-)+ (l--l+ ) + (0+0-)-(l+0+)-(l+l-).

( }

If a particular kind of term occurs more than once in the configuration,

the only way in which the energy of these terms occurs in the set of linear

equations is as the sum of the energies of all like terms; hence this method

gives only the sum. In order to find the individual energies one needs then

actually to solve a secular equation involving the non-diagonal matrix

elements. A case of such a calculation is taken up in 78 .

After the calculations for a particular configuration have given formulas

like (1) and (2), these may be still further simplified by making use of some

special properties of the diagonal matrix components from the preceding

chapter. From the way in which these formulas are obtained it always turns

out that the number of matrix components occurring with a plus sign is one

greater than the number with a minus sign. Therefore any quantity which

occurs as a constant added to all the diagonal matrix elements of a con

figuration will come up simply as that same constant in the expression for

the energy of each of the terms. It is the electrostatic repulsion of the

electrons which gives rise to the separation of the terms. From 767 we see

that a particular diagonal element of Q= Sea
/r# is given by

(A\Q\A) = Ka6|e/riala6)-(a6|e/r18|6a)], (3)
a&amp;gt;d=l

where the summation extends over all pairs of individual sets in the com

plete set. The sum in (3) breaks up into (a) pairs between individual sets in

closed shells, (b) pairs between an individual set not in a closed shell with

those in closed shells, both discussed in 96
,
and (c) pairs between in

dividual sets neither ofwhich belongs to a closed shell. The parts (a) and (6)

will be constant for the whole configuration. Part (c) is what gives structure

* We should like to call attention here to a slightly different formulation by VAX VLECK
[Phys. Eev. 45, 405 (1934)], In terms of a vector model proposed by Dirae, of the problem of

obtaining the first-order electrostatic energies. This formulation furnishes a procedure for

obtaining the energies of the terms of any given multiplicity without first determining the

energies of the terms of higher multiplicity.
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to the configuration apart from Its absolute location on the energy scale.
JV

It is simply the sum S [/(a, b) K(a9 b)] over the N electrons outside of
a&amp;gt;5=l

closed shells, in the notation of 8612. From formulas 86I3 and the tables of

a s and 6 s? it is a piece ofstraightforward computation to express the energy

of each term with the F and G integrals. So many coefficients vanish that

the summations in 86I3 seldom involve more than two or three terms in

cases of spectroscopic interest.

Let us illustrate the method by considering p* in detail. On writing E$ for

the constant part which arises from pairs (a) and (b) we have

(
1+ 0+) = EQ+ F&amp;lt;&amp;gt;(np, np) - 5F2(np, np)

and similar expressions for the other diagonal elements occurring in (2).

Here we have used the fact that G-jJ(np,np) = F^p,np) = Fk
(np,np)IDk ,

whereDk is the denominator occurring in Tables I6 and 26
. Hence finally the

electrostatic contribution to the energies becomes

F2 (4)

J2 .

Although we cannot know the numerical values ofthe integrals F^(np, np)
and F%(np, np) without basing the calculation on a definite assumption for

U(r) we see from the form of this result that, whatever the particular U(r)

chosen, the first-order theory predicts an interval ratio

(i#
- ID) ; (iD- P)= 3; 2, (5)

with the IS as the highest term.

This form of calculation thus provides relations between the term energies

which can be compared with experiment independently of the more difficult

problem of finding a good central field. Such predictions and their com

parison with experimental data are given in 57
.

3. Hie Lande interval rule.*

The next problem in the theory of the energy levels in the Russell-

Saunders case is that of allowing for the spin-orbit interaction, regarding
this as small compared with the electrostatic interaction. The electrostatic

interaction breaks the configuration up into separate terms, each character

ized by a given L and 8, but leaves these terms degenerate with regard to J.

The spin-orbit interaction has the form

t
. (1)

* LANDE, Zeits. fur Phys. 15, 189; 19, 112 (1923).

13
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Front 834 we see ttiat this commutes with J; this permits the levels to be

labelled byJvalues evenwhenthe spin-orbitinteraction is not neglected. But
H1 does not commute with S and L so that these no longer furnish accurate

quantum numbers. In case the spin-orbit interaction is small compared to

the electrostatic, however, we need only consider the effect of the diagonal
matrix components in a scheme of states labelled by SLJM. In this way,
a given term will be split by the spin-orbit interaction into a close group of

levels characterized still by S and L to a good approximation and distin

guished by different values of /. For the individual levelswe use the standard

notation,
^+l

Lj . If we wish to specify a state we write the value ofM as a

right superscript,
2S+1Z$

f&amp;gt;

. In the SLMSML scheme we shall designate a

state by 2S+1A MS9 ML .

The complete matrix ofH1 for all the states in the configuration includes

components that are non-diagonal with respect to the terms. These are re

sponsible for the breakdown of Russell-Saunders coupling, i.e. for the loss

of validity ofthe characterization by S and L. The details of such effects are

considered in Chapter xi; here we confine attention to the diagonal elements.

From the fact that r| commutes with Lit we see that (rf)jL4 is a vector of

type T with respect to L
i ,

to L, and to JF. Hence the diagonal element of the

ith term of (1) is given by the first equation of 1232 ifwe make the correlation

as

(2,2

In this expression everything is independent of / and M except the factor

in braces. Hence the whole dependence on J of each term ofH1 is given by
this factor. Since L mS=j(J* L2 S2

)
this factor is recognized as the

matrix element (SLJM\L*S\SLJM ), so that we may write

r(ySLJM) = (ySLJM\H l

\ 7SLJM)

- l,(ySL)(SLJM\L-S\SLJM\
where (y$L) is a factor depending only on S, L, and y (which specifies the

configuration, etc.) and which is entirely independent of J. The spin-orbit

perturbation ofthe levelySLJ is thus given in the first approximation by (3) .

From this result we see that the energy interval between levels differing

by unity in their J value is

(4)
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that is, the interval between two adjacent levels of a term is proportional to

the higher J value of the pair. This is known as the Lande interval rule. It

has a quite general validity and is of great use in empirical analysis of a

spectrum. As an example we may take the 5D term of the configuration
3dG 4s2 which is the normal term of Fe I :

Energy
Level

(cm&quot;&quot;

1
)

6I 4 0-000

5Da 415-934

5D3 704-001

!&amp;gt;!
888-126

*D 978-068

Here *

observed is the observed interval divided by J, which would be

constant if the rule were exactly obeyed.
The spin-orbit perturbation given by (3) has the property that the mean

perturbation of all the states of the term vanishes, that is, the mean per
turbation of the levels when weighted by the factor (2J-f 1) is zero. This

weighted mean of the energies of the levels of a term is called its centre of

gravity, which is thus equal to the energy of the term as it would be in the

absence ofspin-orbit interaction. To prove this statementwe merely multiply

(3) by (2/-f 1) and sum J from |L-$| to L + S, using the summation

formulas

S/ = JX(X+1), SJ2= p:(Z+l)(2X+l), SJj:P(X+l)a. (5)
J=0 .7=0 J-=0

Here, as in the case of one-electron spectra studied in Chapter v, there is

a possibility of a small finite displacement of a term of a configuration con

taining s electrons through the occurrence ofan infinite value of multiplied

by a factor that is formally zero. In such a case it is necessary to have re

course to the relativistic theory as was done in connection with the 2
/8 levels

in hydrogen.

4. Absolute terra intervals.*

We have obtained the Lande interval rule by a simple use of the first

equation of 1232. In order to obtain the absolute term intervals in terms of

the one-electron parameters

^^H^M), (i)

we do not need to evaluate 372 in greater detail (which as will be seen in

Chapter xi is in general a rather complicated procedure) but can obtain all

* GOUDSMIT, Ptiya. Eev. 31, 946 (1928).

13-2
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the information we desire from the diagonal-sum rule except when two or

more terms of the same kind occur in a coirfiguration. The intervals in this

latter case are considered in 78 .

In order to use the diagonal-sum rule we shall need to know the diagonal

elements of the matrix ofH1 in the SLMSML scheme and in the zero-order

t
scheme. In the 8LM8ML scheme

L\Hi\7SLMSML )

=S (y SLMSML \7 SLJM)(&amp;lt;ySLJM^1
\7SLJM)(7SLJM\ySLMsML )

JM
=

(y SL) (SLMSML\L S\SLM8ML )

=MLMs t(ySL), (2)

the last form being obtained from 733. In the zero-order scheme, since H1 is

a quantity of type F, the diagonal element for the state A = a1 a2 ... aN is

given by N N
(A \H*\A)

= S
(&amp;lt;#\Hl\tf)

= S tefrnfa* . (3)

The manner of using the diagonal sum rule is this: The zero-order states

for a configuration are classified according to the values ofML andMs ,
and

the terms which have components in each cell noted as in I 7
. By the

diagonal-sum rule, for a given value ofML andM8 ,
the sum of the elements

(3) for the zero-order states is equal to the sum of the elements (2) for the

terms which have such components. This gives for each cell an equation

expressing certain of the t,(SL) in terms of the nl , and there will be a

sufficient number of equations to determine all the (SL) unless two or

more terms ofa kind occur, in which case only the sum ofthe (SL) for these

terms may be obtained.

As a simple example consider the configuration np rip which has been

discussed in I 7
. From 172 we see that (I

+ 1+
)
is the state* 3

D&amp;gt; 1, 2 ;
hence we

obtain the equation 2^D] ^ (^ +^g
or

The states 3
D, 1 3 1 and 3

P&amp;gt; 1, 1 are linear combinations of the states (1+0+)

and (0+ 1+) ;
hence ^D) + ^P) i(^p + j|g

or Z(
8
P) = 1 W + U)-

Ifwe attempt to write a similar equation for a cell with eitherML orMs 0,

we obtain of course only the result = 0, but the new terms occurring in

those cells are either S terms or singlets, for which has no real significance.

We thus have obtained the result that

)
= (np rip

3
P),

* See preceding section for notation.
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which is directly amenable to comparison with experiment, and says that

the total width of the 3D should be J that of the 3P.

It will be noted that in this case the lowest J value of each term has the

lowest energy, since the nl are all essentially positive (45
). This positive

sign for (SL) is characteristic of all configurations which contain few

electrons the resulting order with the lowest / value lowest is said to be

normal. A term for which ($) is negative so that the lowest J value is

highest is said to be inverted, and the intervals are specified as negative.

Since the situation mentioned at the end ofthe preceding section in which

a single level has a spin-orbit displacement cannot occur unless the con

figuration contains an s electron, none ofthe singlet or S levels ofnp n p can

possibly have a spin-orbit displacement in the Russell-Saunders case.

5. Formulas and experimental comparison.*

We now turn to a systematic comparison with experimental data of

the formulas for the electrostatic energies and Lande term intervals in

the Russell-Saunders approximation. For the electrostatic energies in the

simplest cases the theory predicts certain interval ratios as in 275. In other

cases where there are more terms and more JTs and 6r
3

s s we treat the latter

as adjustable parameters. This enables us to see if the formulas agree with

the data in any sense: if they do, then it still has to be remembered that the

F*s and 6? *s are not really independent. The actual values ofFy

s and 6r s have

to be obtained from some particular choice of the U(r) underlying the

central-field approximation. This part of the problem is considered in

Chapter xiv.

Departures from these first-order formulas we may regard as due to two

causes. First, the spin-orbit interaction may be so large that the L8 coupling

is broken down. Second, even though the spin-orbit interaction be small,

the neglected matrix components of the electrostatic interaction which

connect different configurations may be important. The first point is con

sidered in Chapter xi, the second in Chapter xv. From 1 16 we know already

that there are no matrix components of the Hamiltonian between con

figurations of opposite parity. Hence all perturbations between E/ussell-

Saunders configurations occur between terms of the same S and L values

and of the same parity.

Is

Here .F = F (ris, nl), &amp;lt;%

= G
t (n s, nl); these arguments need not be specified

*
COJO&amp;gt;OK and SHOBTLET, Pitys. Rev. 37, 1025 (1931).
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unless there is ambiguity. These configurations are considered in detail

in 311 .

As F% is essentially positive, the terms in order of increasing energy are

3
P, W, 1

S, with intervals in the ratio given by 275. This is to be compared
with the experimental values*

Atom Configuration 8 - 1D)/(W -
8
P)

Theory npz 1-50

C I 2p
2 M3

N II 2p* 1-14m 2p* 1-14

Si I 3p
8 1-48

Ge I 4#
2 1-50

Sn I 5p
2 1-39

LaH Gp
2 18-43

Pbl 6p
2 0-62

The departures in case of CI, Nil, OIII are probably due to action of the

configuration 2p %p above. The same remark holds for Si I, so the good

agreement here is probably accidental. In Gel, SnI and Pbl there is

appreciable breakdown of LS coupling (see 311). In La II the configuration

is high and lies in the midst of many possible perturbing configurations.

2p= 3^ (

2P)=0

Here again we can eliminate the unknown F% and compare observed with

theoretical ratios:

Atom Configuration (
2P - 2

&amp;gt;)/(

2
I&amp;gt;

- 4
S)

Theory np* 0-667

N I 2p* 0-500

O n 2p* 0-509

S II 3p* 0-651

As I 4#* 0-715

Sb I 5p* 0-908

Bi I 6p
3 1-121

The deviations in NI and OH are probably connected with disturbance

by 2p*3p } the lowest term of which in N I is only four times the over-all

separation of 2p
3 above this configuration. Similar remarks hold for S II.

In the last three examples departure from LS coupling is important

(3&quot;).

* We wish here to acknowledge our indebtedness to the excellent compilation of energy levels

by BACKER and GOUDSMIT (Atomic Energy States, McGraw-Hill, 1932) for most of the experimental
data used in tiiis book in energy-value comparisons.
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The first-order formulas give (
2
D) = and (

2
P) = 0, so the actual term

intervals must be referred to perturbations or breakdown of Russell-

Saunders coupling.

The formulas are the same as for p2 with 6P written in place of _F , The
data are

Atom Configuration (*
- *D)I(*D

- S
P)

Theory np 1-50

I 2p
4 1-14

Te I 4p 1-50

In 01 there is probably perturbation by 2p
8
3p and in Tel the coupling

departure is great, so the agreement is fortuitous (see 313 3 where Te I is

shown to agree well with the theory for intermediate coupling).

where of course the ^ is 0^(np,n s). Evidently (
2S- 2

D)/(
2D-P) = i

where P= |(2
4P+ 2

P). There are only two cases, Sblll 5s 5p
2 and Oil

2s 2p
2

; here the order of terms is right, but the ratios are badly off: 3-58 and

0-481 respectively. In the case of SbHI the 5s2 6s *S and the &?2 &PD are

nearby and located so as to increase the 2$ 2D interval. In Oil, 2s2 3s 2$
is located so as to decrease the 2$ 2D interval.

In Sb III 55
52&amp;gt;

2 we find 2140 and 2400 (cm-
1
)
for the two values of

(

4
P)

inferred from the two intervals; this is roughly half of (
2
P) = 4500, as it

should be, while
(
2
D) is 507 which, although not zero, is quite small

relative to the others. Similarly in OH the (
4
P) is 14-3 and 1 1-4 from the

intervals, roughly half of
(
2
P) = 27-4, while (

2D)=-0-8 which is very
much smaller.

+0, -20J

where JFO =3 Fj(nP&amp;gt;

nP) + 3 ^o(w * P); Fz-F*(nP&amp;gt;

nP) &amp;gt; &i=

This configuration for O I is discussed in 28
.

(G
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We expect that 6?2 is always small enough that (? determines the sign ofthe

expressions in the G*B. Thus the theory predicts an alternation: singlet above

triplet for S, then below for P and then above for D. This phenomenon
occurs quite generally in two-electron configurations.* We may eliminate

the G J

s by dealing with the arithmetic means of corresponding singlets and

triplets, and find (S D)I(D P) = f for the interval ratio of the means.

The means do not even lie in this order in the known cases which are in C I,

N II and III, probably because of perturbation by p
2

.

Here the (
3
D) and (

3
P) should be equal; this is fairly well borne out by

the data: ^ (ip)

C I 2p 3p 11-2 10-2

10-6 12-5

NH 2p3p 32-1 29-2

30-4 35-2

m 2p $p 734 65-3

68-2 82-0

The table gives the value of inferred from eaoh of the intervals in the

triplet, so comparison vertically tests the Lande interval rule and com

parison horizontally tests the theoretical equality of (
3D) and (

3
P). The

2p4p configuration in these same elements shows the same degree of

agreement with the theory*

These show the singlet-triplet alternation as in^. Using means eliminates

the G s } giving a theoretical ratio (P-F)/(.F~D) = |. The means do not

come in this order in 01, Nil and OIII, nor in Ytll, La II, Gel 4p5d,

where the configurations are high and surrounded by perturbing configura

tions, In Gel 4p 4d and Zrlll 5p 4d the means are in the theoretical order

but the ratios are 0-28 and 3-58 respectively instead of 0-555.

The configuration 4p 3d can be foUowedf in the long isoelectronic sequence

Gal to MIX. The arrangement of the levels is shown in Kg. I7
, from which

it is evident that the configuration is strongly perturbed in the low stages of

ionization, as is shown especially by the occurrence of the 1P below the 3P.

This lowers the P mean enough that the ratio (P F)j(FD) is negative

for Ca I and Sc II. In the higher stages of ionization the behaviour is more

in accord with the formulas, but here the intervals inside terms are great

enough to indicate appreciable breakdown ofBussell-Saunders coupling.

* RUSSELL and MEGGEKS, Sci. Papers Bur. Standards, 22, 364 (1927).

f CADY, Phys. Rev. 43, 322 (1933).
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The 3P is partially inverted so a detailed study of the Lande intervals

would be without meaning. The theoretical s given in the table imply the

relation =

which makes it clear why the 3P intervals are so small since (*F) is enough

larger than (

3
D) to make

(

3
P) almost zero.

Similarly in CI 2pM the relation between the s indicates a reason why
the 3P is inverted, although the conclusion is uncertain because there are

large deviations from the interval rule.

z-

-P

Jp- isr
?p__

5-

g 3 g 3
&amp;lt;=&amp;gt; 5 o 2

Ca I Sc n Tim viv CrV

&quot;

s

I

a-
j

FeW CoVl

55

NIK

Fig. I7
. The ipM configurations in the isoelectronic sequence from Cal to MIX,

The calculated terms are obtained by choosing values of FQ , F2 , ^ , and Gz which give

approximately the best fit of the six observed levels. (Scales in thousands of wave
numbers.)

Kt

Only one example is known: La II 4/6^. The order of the singlet-triplet

means agrees with theory but the ratio (D- ?)/(?
-
F) is 1*05 instead of the

theoretical 0-35
(
=

7/20). The interval rule is not satisfied,
3jD being partly

inverted.
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Here we have the first instance of a configuration in which a term of a

particular kind occurs more than once so that the diagonal sum rule does

not suffice to give complete formulas. The terms are 2 - 2 4PD.F. The formulas

give the energies of the means of the pairs of doublets, indicated by ^L.

in which (m) is the mean of the s for the two 2
J7s, and

Of = Q^na, n p} Gff= GJna, n&quot;d)

GF? = Gi(n p, ri d) Gf^Gz(n
r

p, n&quot;d)

The predicted order of the doublet means is expressed in

The order is DPF in Sc I 3d 4s 4p which is probably strongly perturbed by
3da 4jp. In Ytl and Zrll 4e5s 5p the order is correct but with large depar
tures from the ratio, probably mainly because of perturbation by 4dz

5p.

Regarding the J^2 and jP4 as adjustable parameters we have here four term

intervals to be expressed in terms oftwo parameters. A convenient graphical

way ofdoing this is to plot the observed term values as ordinates against the

coefficient of F2 in the formulas as abscissas. If the F& coefficients were all

zero, the points should lie on a straight line whose slope is F% and whose

intercept is FQ . As they are not we must draw a line on the graph so that the

ordinate differences between the points and the line are as closely pro

portional to the coefficients ofF as possible. Of course the parameters can

be chosen by some analytic process like least squares, but the graphical
method is accurate enough and gives a better idea of the nature of the fit.

The values ofthe parameters chosen so as to give the best agreement with

the data for 2d* in the isoelectronic sequence Sc II to Ni IX, as investigated
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by Cady,* are shown in Fig. 27
. They vary roughly linearly with the degree

of ionization as they should. The values are something like 80 per cent,

larger than what is given by using hydrogenic radial functions for the one-

electron 3d states in 8615a, the hydrogenic values being J
T

2(3d
2
)
= 203 and

jP4(3d
2
)
= 14-72 in cm&quot;

1
. The IS term is much too low in every case, so it was

left out of account in determining the parameters. The accuracy with which

the other terms of these configurations are represented by the theoretical

formulas in terms of these parameter values is shown in Kg. 37 . There is no

obvious reason for the discrepancies in Yt II. The Zr III 4d2 configuration

cannot be represented at all with possible values of F% and F^, probably
because of strong perturbation by 4d5s. Similarly La II 5d2 seems to be

strongly perturbed by 5d 6s.

0*TII Sell Tim V IV CrV Mn VI Fe VII CoVffi Ni IX

AAJrl YII

Fig. 27
. Parameter values in the configuration d2

.

The interval rule and the relation (

3
P) = (

3
jF) are quite accurately

fulfilled in the long isoelectronic sequence studied by Cady.

- G2

Here FQ=F (nd,7id)+2Fo(7id9 n s); Ft^F^Jnd, n^)? Gz=G2(nd,n s).

* CADT, loc. cit.
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We observe that the separations of 2
, |(

2P+ 2 4
P), *D

9 J(
2
J+2*F), and

2
(? are the same as those of *#,

3
P,

1D
5

3
P,

1G in d\

Neglecting the %S which is much too low we may fit Till 3d2 4$ and

Ytl 4d2 55 with the values

TiH Ytl

J2 1015 434

^4 59 32

as shown in Kg. 47
. These configurations overlap and interact with 3d3 and

4d* respectively. In Zrll 4d2 5s the 2$ is not so badly off, although the

-i?-

20-
j -fc-

:
-

&amp;lt;?-

15

\~

,,

l

G

&amp;lt;D

-
//&amp;gt;

ScD Til VF CrV
0U _/_ F^. _

Mn\[ FeW CoTO NiH Til Zrl Y3I

3d2
3d 2

3d
2

4d
2

Fig. 37
. The configuration d

2
. {Scales in thousands of wave numbers.)

agreement in general is very poor. The best parameters are J
2
= 905 and

J4 =55.

According to the formulas 2P- 4P should equal
2J- 4

JP
f

. This is only

roughly true in the first two cases and not at all true in the third:

Tin Ytl Zrll

(
2P- 4

P) 6620 3964 -1877

(*F-fF) 4558 4357 5404

Further reference to these cases is made in Chapter xv, where effects of

configuration interaction are discussed.
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dd

-
8(7,

-

The best example of this configuration is Sell 3d4dl. As before the 1
/S

f

is

much too low and was left out of account. The parameters used are F% = 107,

I9r

18-

17

IB

15

14-

13

Y I

4d* 5s

Fig. 47
. Configurations d

2 s and d d. (Scales in thousands of wave numbers.)

F = 6; Fig. 47 shows the relation of observed and calculated singlet-triplet

means. The five singlet-triplet differences are represented by (? = 2230,
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G2
= 36-7 and &amp;lt;?4

= 3-5 in the manner shown in the table:

iS~*S tP-tP T-D-*D iJ-ajF *G-*G

Observed 3872 -4275 4384 -3935 4864

Calculated 6368 -4385 4492 -3810 4760

Other known instances are Yt II 4d 5d, Zr III 4d 5d and La II 5d d where

the agreement is not as good; the singlet-triplet differences are entirely in

disagreement in La II.

This configuration gives two
2D terms, so we can obtain only their mean

by the diagonal sum rule:

It is interesting to note that 2P and 2H have the same first-order energy.

This configuration is discussed in detail in 78
.

iJGT, ^=1^0 + 10^+ 3^^(15^ + 10^3+ 6?5 ) {(*#)=

The only known case is La II 5&amp;lt;i 4/s
a case in which knowledge of the theo

retical formulas was of use in the analysis.* The singlet-triplet means are

well represented on taking .F = 21400, F%= 115, I= 16:

P D I G H
Observed 25214 20534 21467 19038 23680

Calculated 25216 20506 21191 19323 22598

The G parameters were fitted to the observed separations by least squares,

the values being 1
-

357-6, (?3
= 29-7, (?5

= 3-78 with the following repre

sentation of the data for the singlet-triplet differences ;

P D F G H
Observed 4421 -3279 6112 -4879 9690

Calculated 4638 -3397 5837 -4987 11330

This gives a beautiful example of the alternation in sign of the singlet-

triplet difference with increasing L. The triplet intervals do not follow the

Lande rule sufficiently well for a comparison of the s.

* CONDON and SHOBTLEY, Zoc. cit. p. 1042.
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/3 and//

F4 +m6J6:

207

The formulas for// are

4
- 286.^ 4

-
286&amp;lt;?6)

G^ + 78(?6)

3I =

The formulas for /
2 are obtained by omitting the expres-

sions in the (? s and noting that the allowed terms are:

!/S,
3
P, iD,

S
-F,

1
G,

3
T,

1/. The intervals are given by

_ fo._

No case of//is known at present. But one/
2
is known:

LaII4/
2

. Using least squares the F parameters were

determined as .F2
= 93-33, ^ = 21-58, ^

6
= 0-262. The

comparison with observation is shown in Fig. 57
. The

intervals in the triplets of La II 4/
2 are badly perturbed.

The upshot of all these comparisons is clearly that,

although the first-order formulas agree with the data in

many cases and explain some qualitative facts like alterna

tion in sign of singlet-triplet differences, the second-order

perturbations are usually quite important.

6. Terms in the nlx configurations.

It is of interest to consider the configurations in which

all of the electrons outside of closed shells belong to the

same shell. These are commonly the type associated with

the lowest levels of an atom (compare I14
). The number

of different individual sets possible in the nl shell is

JV/= 2 (2Z-I-1), so without the Pauli principle the number

of different complete sets possible with x electrons in the

nl shell would be Nf . The exclusion principle however

effects a strong reduction in this number, since it requires

that all individual sets in a complete set be different and

that two complete sets containing the same individual

sets in a different order not count as different.

Therefore the number of states associated with the configuration nlx is

configuration of

Let II.
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the binomial coefficient which gives the coefficient of zx in (H-z)
ff

*. This

number is symmetric with regard to x=Nl/2 since I
l
\ = I

^. J
I and has

a maximum value for x=*NJ2. Therefore the complexity of these con

figurations increases with increase in a? to the middle of the shell and then

decreases symmetrically for larger xuptox^N^
The Russell-Saunders terms corresponding to the configurations sx and

px have been considered already in the course of the preceding section.

For the configurations d
x and/

x the calculation of the terms by the method

of 2 becomes rather lengthy. Formulas for the term energies as expressions

in the F and G integrals have not been worked out,
* but the kind of terms to

be expected are given in Table I7 which, for completeness, includes the sx

and p* configurations already discussed.f The values of (SL) as given by

Goudsmit (loc. cit 47
)
for p and d electrons are also included.

TABLE I 7 . RusseU-Saunders terms and Lmd&factors for nl* configurations.

The small numerals tinder the term designation show the number of terms of the kind occurring

in the configuration. The fractions in parentheses give the values of a in the equations ($!/) = a z

for x &amp;lt; 21 -f 1 and (SL) = - afj
for x &amp;gt; 21 -f 1 . Where two terms of a kind occur, the mean value of

a is given.

* The term energies for d* are given by OSTROFSKY, Phys. Rev. 46, 604 (1934).

f RTJSSEUD, Phys. Rev. 29, 782 (1927);

GIBBS, WILBER, and WHITE, ibid. 29, 790 (1927).
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Tlae configurations 3dx occur in the elements from Sol to ZnI
3
the so-

called iron group; 4dx and 5dx occur in the elements YI to Cdl (the palla

dium group) and Lu I to Hg I (the platinum group) respectively. The con

figurations 4/
x occur in the rare earths, whose spectra are not yet analysed

in any detail. Even in the case of the iron group where quite elaborate

analyses have been made the results are as yet far from complete. For

example, in Pel, the normal configuration 3cZ
6
gives rise to sixteen terms

according to the table, but reference to Bacher and Goudsmit s tables shows

that only the
5D ?

3
F, and

ZG terms are known. Similarly ofthe sixteen terms

expected from 3d5
only one,

6
$, is known in Mai.

It is easy to find the largest L value of the terms of highest multiplicity.

For x
&amp;lt;

21 -f 1, it will be possible to have an individual set in which all ms are

positive, satisfying the Pauli principle by taking different m
l
values. Hence

the terms of highest multiplicity have s = xl2. The largest ml
is clearly given

by taking ma= I, ml2
= 11, ... in which case

Thus for a d shell this gives *$,
2D

?

Z
F, *F,

5D, and QS in agreement with the

table as x ranges from to 5. For x ^ 21 -f 1 we can have ms positive for the

first 21+ 1 individual sets and for these Sm
z
== 0, for the others we must take

ms negative and take the remaining w/s as large as possible. This means that

from the middle of the shell on the highest multiplicity diminishes by unity

for each added electron and the associated L values run through the same

sequence as in the first half of the shell.

It is an empirical fact, noted by Hund 3

* that the term of largest S and

among these the term of largest L is lowest in energy.

It is easy to find an expression for the (y SL) of the term oflargest S and

L in these configurations by the method of 47
, since this term occurs as the

sole occupant of the cell of largestM8 andML in the table of complete sets.

The result is that for this term

the plus sign applying for x &amp;lt; (21+ 1) and the minus sign for x &amp;gt; (21 -f 1). This

result affords an interpretation of the trend of the observed (y SL) in the

elements of the iron group in which the 3dx configurations occur. These are

plotted against x in Fig. 67
. We see that they remain fairly constant in the

first half of the shell, then reverse sign and increase rapidly in magnitude in

the second half of the shell.

Using the formula just derived we can infer the value of
3&amp;lt;J

in each

&amp;gt;, Linienspekiren, p. 124.

14
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element from the observed (y$). The values so obtained are also

plotted in the same figure. They lie on a smooth curve showing a steady
increase with atomic number. This is just what we should expect because

with increased atomic number the radial function B(3d) will be drawn in

toward the origin, giving more weight to the regions where I -=- 1 is large

and consequently increasing the value of t,3d . A similar situation holds in the

palladium group where the 4dx configurations occur, but the result is

rougher because the data are not as complete and the departures from

Russell-Saunders coupling are greater.

Mg. 67 . Term-interval parameters in the 3d* configurations
of the iron-group elements.

PROBLEM
Show that the term of Mgiiest L value for nlx is a singlet with L =xl - Ja; (a:

-
2) if x is even, or

a doublet with L=xl-(x- 1)
2 if x is odd (x^ 21 + 1).

7. The triplet terms of helium.

Our discussion of the relativistic theory of the one-electron problem in

55 showed how intimately connected is the spin-orbit interaction energy
with other relativistic effects. We have allowed for this interaction approxi

mately thus far by introducing the terms

2fc{)LfSt with &&amp;lt;)=-

in the Hamiltonian, and in 57 we have seen that this simple approximation
is useful in correlating a large amount ofempirical data on intervals between
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levels of a term. In Chapter xi we shall see that is also quite suitable for

discussion ofa wider class of cases in which the spin-orbit interaction energy
becomes comparable with the electrostatic interaction of electrons not in

closed shells.

But there are cases, particularly for light atoms, in which a more refined

discussion of the spin terms is necessary. The classical instance is that of the

triplet terms of helium. Data are known for 2 3
P, 3 3P5 3

3D and 4 3D. These

terms are narrow and inverted, and the departures from the Lande interval

rule are so great that they were at first thought to be doublet terms. Thus

for 2p*P the interval ratio is 1:14 (- 0-07 cm-1
: -0-99 cm-1

) instead of

the Lande value of 2: 1. These facts have been the subject of a number of

papers* and are definitely related to the inadequacy ofthe usual approxima
tion for spin-orbit interaction. The question has been approached in two

ways. One is to adopt the model of the electron as a small magnet and to set

up the additional terms for its magnetic interaction with the nucleus and

other moving electrons by classical mechanics. The other is to take the

relativistic classical formula for the interaction of two moving charges and

try to adapt it to quantum mechanics by methods suggested by Dirac s

theory for one electron. The first approach is that originally adopted by

Heisenberg, his work being earlier than the relativistic theory of Dirac.

The spin contributions to the Hamiltonian, according to Heisenberg, may
be written for the two-electron problem as

((ri-

o.
e* fSi S.^-SSi-fo-rJS^fo-r+ j

P C
( ^12

In this expression |(r) is to be calculated simply for the Coulomb field of the

nucleus, so the first line contains terms which we have already considered in

the theory for hydrogen. The next two lines represent the interaction ofeach

electron magnet with the field produced by the other electron, v and v%

being the velocities of the two electrons. Finally the last line is the direct

interaction of the magnetic dipoles of the two electrons. The terms of the

last three lines are given by purely classical considerations by associating

* HEISENBEKG, Zeits. fiir Phys. 39, 499 (1926);

GAUNT, Proe. Roy. Soc. A122, 153 (1929); Trans. Roy. Soc. 228, 151 (1929);

OPPEKHEIMEB, Phys. Rev. 35, 461 (1930);

BRETT, Phys. Rer. 38, 383 (1930).

14-2
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with each electron a magnetic moment eS[jJiC. The problem of spin-orbit

interaction in a particular spectrum is thus reduced to the calculation of

the perturbation energy associated with these terms.

If we rearrange the terms in the second two lines we see that they can be

expressed in terms of the products L^Sly L^S^, L^Si and L^S^ 9 together

with terms in which mixed expressions like {rx x v2)
tSl occur. The whole term

in L*S is found to be

on using the definition of ^(r^ in terms of the Coulomb field. This shows in a

rough wayhow part ofthe mutual interaction ofelectrons comes in to reduce

the full effect of the nuclear field in the terms of the form L^Si and affords

a slight justification for the use of U(r) in place of the Coulomb field for

calculating spin-orbit interaction in complex spectra. But the whole

situation is at present quite unsatisfactory and calls for more accurate

treatment.

The approach through Dirac s equations does not make use of the mag
netic moment in the model. It starts by replacing the ordinary Coulomb
interaction by the interaction law of classical electron theory

which includes the magnetic interaction of the moving electrons as well as

their electrostatic interaction. The velocities vjc and v2/c are replaced by
the matrix vectors px and (3 2

of the Dirac theory and this term incorporated
into a Hamiltonian which also includes Dirac s relativistic Hamiltonian

written down for each of the two electrons. This procedure is entirely pro
visional and is beset with numerous difficulties, so we shall not give further

details. When the Hamiltonian so formed is reduced by approximate
elimination of the small Dirac functions that go with negative values of the

rest-mass term it is in close correspondence -with the one obtained from the

classical model. The differences are akin to those discussed in 55 in relation

to the $~levels of the one-electron problem.

The most careful computation of the triplet structure is that made by
Breit, who obtains a quite satisfactory agreement with experiment in the

cases of 2 3P ofHe I and Li II.



CHAPTER VIII

THE RUSSELL-SAUNDERS CASE: EIGENFUNCTIONS

In this chapter we discuss not only the calculation of eigenfunctions in LS

coupling in terms of the zero-order functions, but the question of the mean

ing of quantum numbers referring to less than the whole atom for anti

symmetric states. In 1 we find that operators may be rigorously defined to

characterize the resultant momenta of all the electrons in a given shell in the

configuration. This enables us in 2 to introduce a characterization of LS

coupling terms by parents and grandparents and in 3 to calculate the Lande

intervals of a term from those of its ancestors. 4, 5, and 6 are devoted to

calculations of eigenfunctions proper; while 7 discusses the calculation

from these eigenfunctions of the separate energies and Lande splittings in

cases where two terms of the same character occur in a configuration, with

detailed results for the two 2D s of d?.

1. Vector coupling in antisymmetric states.*

In this section we consider the meaning of vector coupling in antisym

metric states, and the extent to which the matrix methods of Chapter m
are available for use in connection with such states. The situation is roughly

as follows. In the antisymmetric state characterized by the quantum
numbers riWm^w^, n2

l
2
m*m$ , ...; of what operator is m] the eigenvalue?

Clearly not the operator s-of-the-first-electron (unless all the m^s are

equal). But ifnl
P- differs from all the other nl*& in the configuration, it is an

eigenstate of the operator Z^-of-the-%
1 ^-electron. If n2P also differs from

all the other nl s, we may add the two J7s to obtain a resultant L andML

and the two /S s to obtain a resultant 8 andM8 for the n1
1
1 and n2

1
2 electrons

by the formulas of 143 . Then in terms of these states the matrices of 17s

and $ s of the nl P- and n2
l
z electrons would be given by 9311 and 1032. But

if T^PsTi2
?
2

,
we can no longer define an operator i-of-the-^P-electron,

since no operator will distinguish between the two electrons in an anti

symmetric coupled state. It is, however, still sensible to define a resultant L
for the two n1

?
1
electrons, but this operator will not be the sum oftwo com

muting angular momenta, and will not have the allowed values determined

by the addition of a vector Z
1 to a vector Z

1
. Hence if a group of equivalent

electrons occurs in a configuration, we must be content to work with the

whole group as a unit in our vector coupling, not trying to define the angular

momentum of less than the whole group. These ideas are given precision by
* SHQRTLEY, Phys. Rev. 40, 197 (1932). For a discussion from the point of view of second

quantization see JOHNSON, Phys. Rev. 43, 627 (1933).
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the following consideration of the coupling of two inequivalent groups of

electrons.

We consider a group ofN
I electrons (1 ...NT)

in a given configuration I.

Let us denote the allowed terms for this configuration by the quantum
numbers y1 S1L1

, and the corresponding antisymmetric states by

X^&UMIMD^W. (i)

Such a state will be a linear combination* of products of the JVj one-electron

functions of the type

xI(Ai)= SamX)P &amp;lt;k^zxK)&amp;lt;^
2
zXf)---- (2)

m*raf p

The phases in (1 ) for the states of a given term are supposed to be chosen so

that the matrices (A^I^A St and (A^jA *) of LI
=Ll +L2+ ... + LNl and

Sj = S: + 5*2 -f .. * 4- S
Nl

have the values given by 337.

Consider also a second group, ofNTI electrons (JVj+1 9
NI + 2,...,NI +Nu )

in a configuration II whose nl values are all different from any in I.f We
denote the antisymmetric states of this group by

The products Xr(Ai) Xn(A
n

) (4)

of functions of type (1) and functions of type (3) are functions of all

N =NI+NU electrons for which the matrix elements of j have the values

(AiAglljIA jA g) = (APIA S 8(An A n). (
5

)

Let us now define a new operator L1 to represent, not the sum of the angular
momenta of electrons 1 ... N

I9
but the sum of the angular momenta of the

electrons in configuration I. Explicitly, we define L1 as that operator which
when acting on a state

cf&amp;gt;

of configuration I -f II, expressed as a product
of one-electron functions as in 265 , has the same effect as the operator
La 4- Lb + . . .

5 where a,b }
... are the indices in

&amp;lt;f&amp;gt;

of the electrons in configura
tion I. Here II is anyconfiguration inequivalent to I. When acting on a state

of a configuration which cannot be represented as I + 11, L1 vanishes. We
make corresponding definitions of n

, S3L

9 and Sn .

For states formed by the exchange of electrons between groups in (4), the
matrix elements ofL1 have the values

Xgi(Ai)XOII(AH) iXoa(A i) XOTI (A H) = S(&amp;lt;3, Q ) (XAn|i|AiA*), (6)

where (A* A*|U\Xi A n) (AfAgl^jA JA g). (7)

Here $1 is the set of electrons which the permutation Q of electrons 1 ...N
puts in place of electrons 1 ... N^ Q is restricted to be such a permutation
that the electrons in QI and QI1 are ordered. We shall for convenience call

* We shall see in 4s
, 58

, 6s how to determine these linear combinations.

f The symbol A
J indicates that group T of electrons (1 ... Nj) have quantum numbers A 1

.

J Two configurations related in this way will he said to be inequivalent.
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such a permutation an exchange. Formula (6) follows from the fact that the

resultant of operation by L1 on its operand in (6) is the same as the result of

operation by LQ^ on this operand. Matrix components ofL1 between states

of two different configurations are of course all zero.

The state X^A1
) X$n(An) s QXT(Ai)Xn(An) (8)

is thus an eigenstate of (S1
)
2

, (L
1
)
2

,
S*

9
L*

9 with the quantum, numbers
S1

,
L1

, M\, M\. A similar statement holds for the corresponding operators

referring to configuration II. We may easily construct an antisymmetric
linear combination of these eigenstates:

J (9)

where the summation runs over all the Nl/NjlN-^l exchanges Q, and g has

the parity of Q. Since the states in the summand of (9) are all orthogonal,
Y is normalized, and is hence an allowed antisymmetric state of configura
tion I -f II. The matrix components of L1 between states of the type (9) are

seen from (6) to be given by

Hence, the states T of (9) have all the properties of the states

of 63 1 with respect to the angular momenta L1
,
L11

,
and again with respect

to S1
, Sn . Therefore we can use the formulas of 143 to add L1 and JLn or

iS1 and *Sn, or both, to obtain states

VW&IfilPJSPIPtSLMsMi), (11)

where 5=SJ+ 5II=SI+ SII
?

= JLI+ n = I
-|-

11
.

The expressions of 1C3 for the matrix components of S1
, L1

, Su,
n will

accordingly hold for this system of states.

For any quantity F=FI+F2+ . . . 4-FN , let us similarly define F1 as that

operator which behaves like Fa+Fb + ... when acting on a state of con

figuration I + II, and which vanishes otherwise. Then the action of F1 on a

state of type (8) gives

(12)

where (A*iAn| J^|AiAH) = (AAg| J^|AjAg), (13)

and a is a state of a configuration which cannot be written in the form
III + IL* Similarly the action ofF11 on this state gives

(U)
P

* For example, if configuration I is d* and II p2
, a typical III is

&amp;lt;/,
while a typical a is rf

P 1 has of course no components between configurations differing in more than one electron.
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where ft Is a state of a configuration which cannot be written in the form
I-j-IV.

From these formulas we see that the general matrix component of
F = F1+F11

connecting states of configurations I + II and III 4- IV is

XQi(A
m

)X

Hence the matrix components of F between two antisymmetric states of
the type (9) are

From this, (13), and (10) we see that in evaluating these matrix components
and those joining corresponding coupled states of type (11), we may treat

F as F1
-h F*9

where F1 commutes with Sn
,

n
,
and F^ with S\ Ll

. If F is

a vector of type T ( 83
)
with respect to either L or S, and commutes with

the other, the matrix components ofF1 and F11 between states of type (11)
will be given by the formulas of 1 1 3

.

To summarize, we have found that the matrix components of a quantity
of type F between an antisymmetric state of configuration 1 4- II and an

antisymmetric state of III 4- IV may be reduced to those of FI between

antisymmetric states of I and III and of Fu between antisymmetric
states of II and IV in just the way we should if the uncoupled states

of I + II and III -f IV had been taken of type (4), without exchange
of electrons in the process of antisymmetrizing as in (9). Here con

figurations I and II must be ^equivalent, and III and IV must be

inequivalent.

2. Genealogical characterization of LS-couplxag terms.

As pointed out in I
7

, a term is not in general completely characterized by
its configuration and L value since a given configuration may contain
several terms of the same sort. We shall now investigate the allowed terms
from a vector-coupling standpoint with a view to obtaining where possible
a more general characterization and an introduction of the important
concept of parentage.

Ifwe divide the electrons of a configuration into two inequivalent groups
as in the preceding paragraph, we see that the allowed terms of the con
figuration may be obtained as in 1 8 1 1 by coupling in all possible ways the S
and L vectors of the groups. This means that we can obtain the allowed
terms for any configuration by using Table I

7
of allowed terms for groups of

equivalent electrons, and that these terms will be characterized by the
terms of the constituent groups. Where a group contains three or more
equivalent d or / electrons, we cannot distinguish between the terms
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occurring more than once in this group except by giving the actual eigen-

functions, since it is impossible to divide such a group.
Thus for the hypothetical configuration p2d2

, the allowed terms are

tf&amp;gt; (
3
P) d* (

1
S)

3P
(
3
P)

8P
(

S
P) i.*.5Pi&amp;gt; (

3
P) *PDF

(iD)iSPDIG (1)

(
3
P) *PDFGH

Although there are six each of 1D 9

B,
3P s, and 3

J&quot;s occurring here, each is

individually characterized by giving the terms of p2 and d2 from which it

arises.

When one electron is added to an ion, the terms of the ion are called the

parents of the terms of the atom. Thus if we consider the addition of non-

equivalent , p, and d electrons respectively to the sd configuration of an

ion, we obtain the terms

sd s sdp s dd

sd(T-D}s*D sd(iD)p*PDF s d C~D) d ZJSPDFG (2)

3 d (
3
D) s *, *D s d

(

3
D) p ZPDF, *&amp;gt;PDF s d (

S
D) d *SPFGf *SPDFG.

The groups of terms of the same multiplicity which arise from the addition

of s, p, and d electrons are called monads, triads, and pentads respectively*

(in general potyads). Thus, in the example above, the configuration sdp
contains a doublet triad having as parent sd(

lD) and a doublet and a

quartet triad having sd(*D) as parent.

The occurrence of these close groups of three or five terms was noticed

empirically soon after the beginning of the analysis of complex spectra.

Hence the eigenfunctions which arise in the convenient theoretical designa
tion by parentage must to a certain approximation be the actual eigen-

fanctions which diagonalize the electrostatic interaction, even when more
than one term of a kind occurs. The reason for this is illustrated by the plot,

in Fig. I 8
,
of the energy-level spectrum of 1. This spectrum appears essen

tially as the sum of three one-electron spectra converging to the three terms

ofthe low 2^
3
configuration of II as limits. The terms built on each of the

parent levels have essentially the energies ofa single valence electron moving
in a central field due to the ion in a particular state. For this spectrum the

central-field approximation which regards the electrostatic interaction as a

small perturbation on each configuration is quite invalid; the electrostatic

interaction of the core is larger than the separation between configurations
in the central-field problem. Large interactions between configurations are

*
They are designated in this way even when the number of terms is not as large as indicated,

e.g. (
X
P) d gives a pentad containing only three terms 2PDF.
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expected, not only among the low configurations plotted, but between these

and configurations high above the ionization potential which have other

terms of II as parents ;
for the agreement with the formulas of 57 of 2p

3 Bs

is no better or worse than the agreement of the II 2p
3
parent, and the per

turbations of this parent are caused by higher states of II. But whatever

-40

-30 -

2D

20

5

4:

&0

|

7s

3p
3D

&

30-

$0L. 2p
3
fS) 2p

3
(*D) 2p

3
(*P)

Fig. 1s . The energy levels of oxygen I. This shows aU observed levels except 2p4
(76,000-110,000 cm-1

) and 2s2p
5*P (-13,000 cm-1

). Hydrogen levels are
indicated by broken lines.

the perturbation of OII#3
, it is certain that the actual eigenstates of the

p3 levels are to a good approximation the parents ofthe plotted levels ofO I.

The electrostatic interaction of the valence electron with the ion causes only
the small separation ofthe singlet and triplet, or triplet and quintet polyads.
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In many of the complex spectra, such as those of Ti, V, and Zr, where the

overlapping of configurations is not so exaggerated as in 1, the levels of a

given configuration will still be found to occur in groups (polyads) having

approximately the relative locations of the terms of the parent configura

tion. The parentage is not exact, however, for as soon as the intervals

within the polyads due to the electrostatic interaction of the valence

electron with the ion becomes comparable with the separation of the

polyads we may expect an interaction between the similar terms arising

from different parents.

3. Lande intervals for terms of coupled groups.*

With the results of I 8 we may easily obtain a formula for the intervals

in the terms of a configuration I -f II in terms of the intervals in the in-

equivalent configurations I and II separately. From 372 we find that

(YSL) =S (yLg(rt)L&L) (yS\S&8). (I)
1=1

We have omitted the sum over y because each quantum number in y will

in general either refer to the spins, in which case f(^)J^ will be diagonal
with respect to it, or will not refer to the spins, in which case S^ will be

diagonal. If now the term ySL is derived by the addition of the term S1 L1

of configuration I and the term S11U1 of configuration II, we may split the

spin-orbit interaction into two parts, one ofwhich refers to I, the other to II.

This breaks the sum (1) into two parts

lV:^

.) (2)
II

In accordance with the discussion at the end of I 8
, we may evaluate

each of these parts independently without troubling about the fact that the

eigenfunction is antisymmetric. In the first sum, |(rz-)L and S^ may then

be assumed to commute with U1 and S11
, in which case the factors are each

given by 1138 ifwe correlate

Q-^fa) L&amp;lt;

or S, jj+If or &
j-&amp;gt;L

or S 3r*IP or SP.

This reduces the first sum to a known multiple of

* GOUDSMIT and HUMPHBEYS, Phys. Rev. 31, 960 (1928).
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The second sum is similarly reduced, to obtain finally

2L(L+ .

D-ffi(ffl+i)+s^(s^+i) rtanr^ (4)

By this formula, the values of for any configuration may be expressed in

terms ofthose for configurations ofthe type nlx, which were given in Table I
7

.

In particular, if a single ril electron is added to an ion, QS&IP)**^.
Formula (4) gives the values of f immediately for two-electron configura
tions nlril if we take

^ and

as we shall show in 68 , this gives the correct answer even if the electrons

are equivalent.

4. Calculation of eigenfimctions by direct diagonalization.*

We wish now to show how to determine the eigenfunctions of states in

LS coupling in terms of states in the zero-order nlmsmt
scheme.

States characterized by SLJM are given directly in terms of states

characterized by SLM8ML by the formulas of 143 . States characterized

by SLMSML for configuration I-fII are given in terms of those of con

figurations I and II bythe general procedure of I 8
;
this is discussed in detail

in 68 . These considerations reduce the problem essentially to the deter

mination of eigenfunctions in the 8LM8ML scheme for configurations con

sisting wholly of equivalent electrons. In order to use the formulas of 143

in the way we have sketched, it is however necessary that the relative

phases of the states of a given term be such that the matrices of L and S
have the values given by 33

7.

The direct method ofobtaining eigenfunctions characterized by SLMSML
is to diagonalize the matrices of 2 and S2 in the zero-order nlmsml

scheme.

Since such a diagonalization does not give states with phases chosen in any
particular way, it is necessary, if we wish states characterized by SLJM,
to diagonalize also the matrix of JT

2
(or, for greater convenience, of L*S).

Because the process is laborious and the phases arbitrary, this method has

little practical application. We shall, nevertheless, consider the deter

mination of the matrices of Z,
2

, S2
, and L-S in the nlmsml scheme because

*
JOHNSON, Pfcys. Rev. 39, 197 (1932).
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our discussion in Chapter xn of transformations for configurations con

taining almost closed shells will depend on the properties of these matrices.

Because the simultaneous diagonalization of these three matrices is an
excellent illustration of the process of matrix diagonalization described in

72
, we shall give detailed results for the configuration p

3
.

The matrix components of L2
, S*, and L*S in the nlm/n; scheme may be

easily expressed in terms of the one-electron components (cf. 334 and 73
3)

(a\Lx \b) (n
a
l
a
m%mf\l

(mf 1, m\) ffiV(l
b

m*&amp;gt;)(l

b + m\ + 1), (la)*

(a\Sx \b) =8(*Zmf,wft

Pmf)8(mJl,mJ)i, (lb)*

(lc)*

by the formulas of 66
,
76 and the relation 336. In this way the following

results are obtained. (The sign is in all cases to be chosen positive or negative

according to the even- or odd-ness of the permutation which changes the set

A from its standard order to the order in which sets in A 1

which match
those in A all stand at the same places in the lists, with a! corresponding to

a, V to b).

Matrix of L2
. We get non-diagonal elements of JL

2
only ifA r

differs from
A in two individual sets, say that A has the sets a, b while A has a

,
& . This

component has the value

(A\L*\A )= 4{(a Lx \a )(b\Lx \b )-(a\Lx\b )(b\Lx \a )}8(M,M ). (3a)

The diagonal element of JL
2
is

(3b)
a a&amp;lt;6

where a and 6 run over all the individual sets of A.

Matrix of Sz
. We get non-diagonal elements of S2

only ifA differs from
A in two individual sets, say a and b. This component has the value

(A\S*\A )~ 4{(a\Sf\af)(b\8x \b )-(a\8x \b )(b\8f\^)}^Jf,M ). (4a)

The diagonal element of S2
is

(^15
2
|^)=^(Jfl-f^~JV ), (4b)

where N is the number of electrons and AT/
is the number of pairs of in

dividual sets with the same nlml9 each pair counted only once.

* It is to be noted that for any of these quantities

(n
a

l m
wij| \n* I* mj mf) =(n* l

a -m -m| \n
b

V&amp;gt; -mj -
wf). (2)

This property will be of use in Chapter xn.
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Matrix ofL*S. IfA f

differs from A in regard to two individual sets, a and

6, we obtain

-(a\Lx \b )(b\Sx \a )-(b[Lx \a )(a\Sx \b )}S(M,M ). (5a)

IfA differs from A in regard to one individual set, a,

(A\L-S\A )={(a\l-S\a )-2 Z(a\La.\b)(b\8ie
a )

&quot;-2 I, (a \L,\e)(e\Sa \a)}8(M,M ), (5b)
C

where 6 and c run over all the individual sets common to A and A . It is

worth noting in connection with this formula that one obtains no value

unless a, a are of the form
(m/)&quot;, (mz 1)

+
. The second term in the braces

vanishes except for one value of b
} namely (m^ 1)~; the third term vanishes

except for one value of c, namely (%)+ . When either of the last two terms

does not vanish (i.e. when the appropriate 6 or c exists in the set A), it has

just the value (a\L*S\a ). The diagonal element of *Sis given by

With these formulas it is rather easy to calculate the matrices of i2
, S2

and L Sin. the zero-order scheme. Only those sets ofthe configuration which

are outside of closed shells need be considered in calculating these matrices.

The non-diagonal elements are obviously not affected by the presence of

closed shells. The part of a diagonal element which results from a closed

shell is easily seen to be zero [using 3 75 in the case of (A \L?\A)].

Illustration. The configuration p*. This method of calculation will be illustrated in detail for the

case of the configuration ^J
3
. This configuration leads to the five levels 4

/S
|,

2

Pj,
2

P|,
2

D|,
2

D|.
We shall consider only states characterized byM = J this will give us one state of each level. The

zero-order states for M=
J-
are given by

(1-0+ 0-)

(!+,!-, -1-)
C

D
E

1 I

i r
i (6a)

Ifwe make a plot such as 1
?2 we see that the terms 2P and 2J9 have states in both box a and box

/J,

while 4 has a state only in
]3,

Hence we may infer that the eigenftmctions for 4
|
will not involve

states A and JB. In this scheme, the matrices ofS2
,

2
, andLmS have the form (cf.** 72 for notation;

the lines in the matrices indicate the separation between a and
j3)

A JB C D E

(6b)
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ABODE
223

(60)

ABODE

l\(A\L-S\B)\\
= p*. (6d)

So far as the diagonalization ofZ.2 and *S2 are concerned a and j3
are quite independent. Consider

the matrix ofS2
. For a. the eigenvalues of S2 which may occur are those corresponding to the two

doublets, namely f and f . For we have in addition to these the quartet eigenvalue ^f-. A trans

formation which diagonalizes this matrix is found by the method of 72 :

\\(A\*M)\\-- (6e)

(Because of the degeneracy this transformation is not uniquely determined for either pair of

doublets.)

When the matrix (6c) of I,
2 is transformed to this scheme in which S2

, Sz , Lz are diagonal by
the relation (cf. 727)

11!, (6f)
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it takes the form

*,

whicli is diagonal with respect to $, as required. The eigenvalues of Z,
2 for both the stepmatrices

a, 8 | and , /S=| are now known to be those corresponding to P and D, namely 2 and 6. The

transformation which diagonalizes (6g) is given by

(6h)

The new states are now in the SLMsAfz scheme, the values ofM3 and MI being indicated by
a. or

j8.

TA transformation from the zero-order scheme, to the SLMSM.L scheme may be obtained by the

nmltiplieation (of. 7=6) of (6e) by (6h):

* We have chosen the phases so that 2PW .
fl *!&amp;gt;..,

, Q have the proper relative phases asA oc atiu p cc jina p * * *

determined by the method of the next section, and so that 2

Pf^i*
2

-^| an(l |
are the proper

linear combinations of these states as given by 143 . In this way we can make full use of these

matrices without having to rewrite them, with more useful phases.
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When the matrix (6d) ofL S is transformed to this scheme, it becomes

225

(6k)

which is diagonal with respect toL and 8, as required. The eigenvalues of this matrix are calculated

from the formula L-S=MJZ -L2
-S*), which gives -1, J, -f, 1, and for 2

Pj,
2

P|,
a

l&amp;gt;j,*jZ&amp;gt;|,

and ^s respectively. The transformation to these states is given by

(61)

TAe transformation from the zero-order scheme to the SLJM scheme, is then given by the product of

(63) and (61):

^

-&

D

E

(6m)
11

* See footnote to (6j), p. 224.
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It is Interesting now to
verify&quot; directly the electrostatic energies which were obtained in 57

by
the diagonal-sum role. From the results of 76 and 86 we find for the matrix of electrostatic

interaction in the zero-order scheme

A B CDS

(7)

When this matrix is transformed by (6m) to the SLJM scheme, it becomes

(8)

which agrees with the results of 57 . The same eigenvalues would have been obtained by trans

forming (7) to the SLMsM_i scheme by (6j).

5. Calculation of eigenfunctions using angular-momentum opera
tors.*

We shall now give a convenient method of computing SL eigenfunctions

proposed by Gray and Wills. Having found the eigenfunction *(SLMSML )

for MS ~S, ML = L, this method makes use of the symmetric operator
&=Lx-iLy to give the eigenfunction ^(SLMSML 1) by 33

3, and the

operator ?~Sx iSy to give ^(SLM8 lML ) 9
and so forth. In this way

the whole of an SL term is found with the proper relative phases for all

states, so that the results of 143 may be used directly to obtain the SLJM
states. The first state is found purely from orthogonality considerations;

hence the states of different terms have no particular phase relation. We
shall need to discuss only the transformation to the SLMSML states.

In order to carry out the operations mentioned we shall need to know the

result of operating with &amp;lt;=$? and f on a state expressed in terms of the anti

symmetric zero-order functions &amp;gt;(mJ m] ,m| mf , . . . )
. Since J5?= ?l+ &amp;lt;

2 + . . . ,

we have from the general relation

(1)

* GRAY and WELLS, Phys. Rev. 38, 248 (1931).
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the result

Since S? is a symmetric operator, it commutes with the operator $$ of 366.

When we apply s to (2) we find

With this formula the result of operation by J? on any state is easily

calculated.

The result of operation by f is very similar, the ms values being suc

cessively decreased by 1 in place of the m^ values. The coefficients which

occur are limited to 1 and 0, 1 for ms
=

J, for ms
=

J, so that operation

by P gives just the sum of the states resulting when successive m^ are

changed to mj~ . The operator # ,
if one has occasion to apply it, is just the

siirn of and f\

Illustration the configuration d3
. As an illustration of this method of

calculation, let us obtain some ofthe eigenfunctions for the configuration d*;

in particular let us obtain one eigenfunction for each of the two 2D s to use

in 78 for the separation of the energies ofthese terms. A classification ofthe

zero-order states of d? according to Ms ,
ML down to |, 2 together with the

terms which have components in each partition is given below (cf. 172) :

jjfefff Jfcf jfrfff j\f^

i 2

B
C

E
F
G
H
J
K
L
M
N

1+)

0+)

(2+2-

(2+2-
(2+1+ .

,

(2+2- -1+)
(2+ 1+ 0-)

(2+ 1- 0+)

0+)

(2+2- -2+)
(2+1+ -1-)

(2+1- -1+)
(2- 1+ -

1+)

(2+0+ 0-)

(1+ 1- 0+)

2D

f 3 D (2+1+ 0+) [
4
.F]

f 2 I (2+1+-1+)

Our problem is, then, to obtain two (orthogonal) eigenfunctions for

2D, J, 2. Before beginning the calculation proper, let us calculate the action

of& and f on certain of the above states [omitting the factor ft&quot;
1

, cf. (3)]:

(5)

Sfl =

15-2



228 THE RUSSELL-SAUNDEBS CASE : EIGENFUNCTIONS 58

Now the state *H, |, 5 is just A. From (1) we find that

But

from (5). Hence 2#, J, 4= 10-[V&B- 20].

The other 2H J

s are obtained in succession:

(6a)

2H]
2#, i 2=30~V -K + 3 -2M - 3xV +V 60].

The state 2
G, \, 4 is a linear combination of B and C orthogonal to

2HS \&amp;gt;

4. The choice of its phase is purely arbitrary.

*, J, 3 =20&quot;*[Vftff 4-3JT
- G -2Q (6b)

2
G, J, 2 = V^[2J +3^ +i -4M + 4^T +V|O].

We have now 4
J, f ,

3= D. By operation with ^ on this we obtain 4
J^ |, 3:

i 3)
=V3 (

4
J, J, 3)

=

,
3 is determined by its orthogonality to the above three states for

^

We have now four states of the partitionM8
=

\&amp;gt;

ML=2. The other states

of this partition are both 2D s; any state orthogonal to the four above is a

2D and there are two linearly independent such states. Let us choose one

at random and a second orthogonal to it

:=i [- J- K+L + N
_ ]

=84~l
[-5J + 3JT+L-4Jf-3zY-2V60].

*

This procedure may be continued to obtain any desired state. Any other

configuration is handled in the same way. A check is continuously furnished

by the fact that the states must come out properly orthonormal.

6. Calculation of eigenfunctions from vector-coupling formulas.

Let us first consider how we may obtain the eigenfunctions resulting

from the coupling of the terms of two inequivalent groups of electrons as

inl 8
.

Let XI (/S
Ii1

Jf|Jf) represent one of the antisymmetric eigenfunctions

ofa given term ofgroup I. This is supposed to be known in terms of the zero-

order functions $I(J.)
=

3&amp;gt;I(a
1

J
a23 ...,a

N
*)
for the configuration in question.
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Similarly letXn(/S^ 1^ Jf|*Jf *) be one of the antisymmetric eigenfunctions

of a term of the second group. The product of these two states will be a

known linear combination of the form

A,B

This is antisymmetrized as in 189 by application of the operator *5/ . It

is easily seen that

rf ^a^a^...^*!)^^
an antisymmetric zero-order function for configuration I -I- II; hence the

antisymmetric function

(2)

In other words, these antisymmetric functions are obtained by simply

replacing the products of &amp;lt;D s for I and II by &amp;lt;l&amp;gt; s for I -f II.

Now let us see how to apply the formulas of 143 to the coupling of $* and

S11 and of U- and IP-. Let us write the function Y purely symbolically as a

product of a function referring to the S s by a function referring to the L s:

T(# IfM\Ml,S*IPMYMn) = T(# /S11 Jf1 JfI
1
) o&amp;gt;(

I?inMl If*1
}. (3)

Let T(S1 SIISMS ) designate the linear combination of the r s which is

given by 143for the coupling ofS1 and S11
; let Q(ZJ i11 i JfL) similarly refer

to the coupling of D- and D1 * Then symbolically, the -k$-eoupling states

are given by

^(fflI^ y S^Ifl &amp;gt;

SLMsML)
= T(SiS^SMs)a(VL^LML\ (4)

where the right side of this equation is to be interpreted according to (3).

Two non-equivalent electrons.^

The eigenfunctions for a configuration consisting of just two non-

equivalent electrons are given by these considerations ifgroup I is one ofthe

electrons, group II the other. Xx Xn of (1) is then just

and Y of (2) just

which we write as in (3) as T(mjm|)o&amp;gt;(mjmf). Making the correlation

T( 1,

l)-^
f +)

T{ 1, 0)=2&quot;*[T(+&amp;gt; -)+T(-f +)]
^

T( 1, -I)=r{--).

* Note that we are not here following our convention of capital letters for antisymmetric

functions, small letters for all others.

f BABTLETT, Phys. Rev. 38, 1623 (1931).
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If we consider in particular the configuration np rip, with the correlation

=0, Ifj=0) =:3&quot;*[cp(l,
-

1) -a&amp;gt;(0, 0) +cw(
-

1, 1)]

H( I, l)=2^[a&amp;gt;(l,0)-a&amp;gt;(0,l)]

Q{ 1, 0)=2~*[o&amp;gt;(l, -!}-( -1,1)] (6)

JQ( 1,
-

1) = 2~*[&amp;lt;o(0,
-

1)
-

o&amp;gt;(

-
1, 0)]

O( 2, etc.

The &L eigenfonctions (4) are then the symbolic products of T and fi:

1, 0) =*3~*[$(1+ -
1+)

- $(0* 0*) +$( - 1+ 1+)]

etc. (pp) (7)

For the important configurations Is, we have

t(L,MIl)
=

a&amp;gt;(ML,Q). (for allJft) (8)

Hence from (5)

,, 0, M )
=

2~*[&amp;lt;(
M1 , 0-)

-
&amp;lt;

1, Jfi)=&amp;gt;(Jft,0+) /7 . //vx
i { ifS] [ y )

OTUT \ (^&quot;&quot;a
r/Fk/ H,r4- A \ . /f\tKT {\4-\~\ v ^

, J2_j,)
= Z

Addition of an electron to an ion.

Let us consider the addition of an s electron to the configuration pp to

obtain pps. In particular, let us find the eigenfunctions for the two 2$ s

which result, namely pp (*$) s ZS and pp (

3
$) s 2$. The states pp^S and 3$

are given by (7). The first of the 2$ s is given merely by adding
+ or 0~ to

the single state ofpp 1
/S

f and antisymmetrizing:

^ i, 0) =6~*[^(l+ - 1- 0) -0(1- - 1

For the other 2 we must add S1 = 1 to S11= ( to obtain 8= :

T(5=i,Jfs= i)=3^[V2r(l,-)-T(0,+)]

T(flf=J, Jtfj,= -i)=3&quot;&quot;

i
[r(0,-) -V2 r(

- l f +)].
^ j

Hence

) -( - 1+ 1- 0+) ~$( - 1-

-!, etc. (10b)

This state is orthogonal to the other 2
$, |, 0, as required.

We may characterize the two 2$ s of this same configuration in another

way by considering the addition of a non-equivalent p electron to p s as

parent. Let us obtain the eigenfunctions for ps (*P)p *S and ps (
lP)p 2S,
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For the first wo must add #= I to Sn= | as In (II), and &= 1 to Ifl= 1 to

obtain L=Q as follows:

Q(X=0, Jfi=0)=3~
i
[w(i, -l) -0(0,0) +(-!, 1)]. (12)

The symbolic product of this with (11) gives, when we use the functions (9),

,0)=rl8~*[2$(l+0+ -l-)-2^(0+Ori-0-)+2&amp;lt;&(-l+0+l-)-O(l+Or- -1+)

-$(1- 0+ -
1+) +0(0+ 0-0+) +$((T0

4
-0+) -O( - 1+ 0- !+)-( - 1-0+ 1+)]

J, etc. (13a)

The states of the second 2$ are given by (12) and (9):

+${0- 0+ 0) +$( - 1+ 0- 1) -&amp;lt;&(-!- 0+ 1)]. (13b)

The quantum numbers in these zero-order functions refer to the electrons

np, n ff

s } n p respectively, while those of (10) refer to np 9 n p, n&quot;s. This

difference of arrangement must be taken into account in a comparison of

the two sets of states. We see that the states (13) are quite different from the

states (10); but since there are only two possible states 2
S, J, 0, they must

be obtainable from (10) by a unitary transformation. This transformation

is in fact the following

-}\^
( ]

Two equivalent electrons.

As noted in 46
,
we may look at the exclusion principle from the following

point of view: We build up non-antisymmetric states characterized by
quantum numbers n^m^m^, ri^m^m^, S12L12 , n^m^m^, ..., SLMSML .

(The subscripts here refer as usual to the definite electron which has the

quantum numbers indicated by the superscripts.) Then, by application of

the operator cS/? these states are antisymmetrized to obtain states still

characterized by SLM8ML&amp;gt;

but not necessarily by any other definite

quantum numbers. If certain of the electrons are equivalent, two things

happen. First, the antisymmetrized states are no longer normalized and

some of them vanish these are forbidden; second, some of the anti

symmetrized states are linearly dependent this reduces the number of

distinct eigenfonctions. In this way we may obtain aE the eigenfunctions

for any configuration by coupling vectors and then antisymmetrizing. In

general, however, for configurations containing more than two equivalent

electrons, this is less easythan the method of 58 which takes full cognizance

of the exclusion principle from the start.

For the case of two equivalent electrons, however, it is easy to see the

effect of the exclusion principle and to obtain the eigenfunctions by this

method. Let us, according to the formulas of 143, couple the s s and VB of
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two equivalent electrons to obtain the state ^(nihn^SLMSML). This state

is literally the product of an orbital function ^r(n1lln2l^LMI) and a spin

function tff^s^SMg). By 1437 interchange of electrons 1 and 2 merely

multiplies $r by (
-

l)
2&quot;=

(
-

1)* and &, by (
-

1)
28-8=

(
-

1)
5+1

. Hence

is already either antisymmetric or symmetric according to whether L -f S
is even or odd. The symmetric states are forbidden; the antisymmetric

states are all distinct since they all refer to different SLMSML and hence

are all allowed. TU allowed terms for nP are hence *S,
3
P,

1D 3

Z
F, ..., *(2Z),

as we have found in special cases in Chapter vn. Since the states
iff

are

normalized, we may write

Y(nZ wJSLMsMJ^n&nJiSLMSML) (15)

ifSL is an allowed term. Since the operator jtf has the eigenvalue V2lwhen

applied to an antisymmetric two-electron function (36
) &amp;gt;

T=
2~*j/^f. It is

jtfiff which we obtain if we set n= n in the eigenfunctions for the con

figuration nln L Hence we can obtain the eigenfunctions for nl2 from those

for nlril by setting n= n and dividing by V2 to normalize. Thus we obtain

from (7)

T(^2
*8, 0, 0) =3~*[O(1+, -

1-)
-

(0+ 0-) - $(1~ -
1+)], ( 1 6)

while ifwe set n~n in s
/Sf, these states all vanish.

Because of the relation (15), we have the important result that we can

obtain the matrix component of a quantity F=Fl+F2 between two allowed

states of nP by giving quantum numbers n^s^ to electron 1 and n
zs2l%

to electron 2. This permits us to use formulas of Chapter m for such

configurations in the same way as we found in I 8 that we could use them
for non-equivalent electrons. For the matrix component between an
allowed state of ril* and a state ofriln l we have

V 8 LM8lf
t

L)

SLMSML ) F^Wn^n^ S LrMf

sML)

n2Z2 SLMsML )
F2^(n^ $ S LMSML)

-2-*^^^SLMSML) FiWn&nHfc S LM8MLy,

on interchanging electrons 1 and 2 in the second term, this becomes

=V2$(n&n&SLMSML)F^n^n^ SrLM8ML). (17)

A similar result holds for states characterized by J and M. Hence ifwe use

the formulas of Chapterm to find matrix components between configura
tions nl2 and riln V by assigning definite quantum numbers to the electrons,
we must set those components from forbidden states of nl2 equal to zero, and

multiply the rest by &amp;lt;\/%.
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No considerations of this sort have been given for more than two equi
valent electrons, so that it is probably not possible to apply matrix methods
to calculations within groups of more than two equivalent electrons.

7. Separation of the 2D s of d3 .*

When two terms of a kind occur in a given configuration, we have seen

that the diagonal-sum rule will not determine their separate energies or

Lande splittings. These terms may be separated, however, by finding the

complete matrix of electrostatic interaction Q by the formulas of 8 if we
know a set of i/S-coupling eigenfunctions. Since Q is diagonal with respect
to 8LM8ML and independent ofMSML , it will only be necessary to use

that part of the matrix of Q which refers to a given SLMSML .

Thus if we wish to separate the two 2D s of c
3

,
we need only use the

second-order matrix connecting the two 2D, |, 2 s of 586e. This matrix is

found to be

(1)
3V2l(F2

-5F4)

2
- 57J4

which has for its eigenvalues

(2)

This formula then gives the separate energies ofthe two
2D terms. The eigen

functions for these terms, forMs
=

J, ML =2, may now be obtained. If we
write the eigenfonction for either of them as

* A r/3J? + 7^2+ 63*4- \*
,&quot;Hwe find ot= I ._ 2-=

I + 1

L\ 3^21(^-5^) / J

Since (
1

) and (2) are independent ofIfs andML , the same linear combination

of a 2D and b 2D obtains for any state of the term.

Let us now consider the absolute Lande intervals for these terms. Since

T(2D, 4, 2) =T(2

D|),
we have from 373

(*D,l,2\H*\*D,l 9 2) = t(*D). (4)

Equation (3) gives the eigenfunction for 2D, \, 2 in terms of zero-order states

each characterized by M8
=

J, JfL= 2. Since these states all belong to the

same configuration and have the sameMs andML , no two ofthem can differ

in regard to just one individual set. Hence H1
, a quantity of type Jf, can

* UITOBD and SHOETLEY, Phys. Rev. 42, 167 (1932).
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have no matrix components connecting two of these states, so that we can

calculate (4) entirely in terms of the diagonal components 473. In this way
we find that

59^-435^4

4 + 8325.F|
()

31450

20-

tn
CC
id
CD

?I5^

tn
Q
Z
c/)

I
5

42700 27300-

JG~

- OQ
O

_
&amp;lt; 03

o
&amp;lt;

o
3
3

V193J1-

We shall now see how these calcula

tions compare with the experimental

data. The first instance of d? occurs in

Till 3d3
,
which although completely

mixed up with d2s gives a fairly good
fit for the terms exclusive of the 2D s

with ^2=845, J4=54 (3^=17,750);
see Fig. 2s

. If we put these values in (2),

we find for the energies of the two 2D s

12,820 and 31,450 cm-1
. The only ob

served 2D is at 12,710 cm-1
,
which

agrees excellently with our lower 2D.

The position of the second 2D is pre

dicted 10,000 cm&quot;
1

higher than any
other level of the configuration, which

may account for its not being found.

The intervals in this configuration also

fit the formulas fairly well. This is seen

from the following list of values of d ,

calculated from the observed intervals (beginning with the widest) in the

terms:

*J 85-6,88-6,81*0 ZH 88-9

*G 89-2 2D 81-0

*P 146-7,644 *F 102-7

2P 125-0

If the formulas were accurately followed, these values would be all equal.

It is pleasing to find the 2F inverted, as the theory predicts. If we take

89 cm-1 as the correct value of di we calculate from (5) the lower
2

J&amp;gt; interval

as 142 cm-1
,
while the observed value is 129-4. The interval for the higher

2D is calculated as 677 cm&quot;
1

.

In the 3$3 of VIII, all the terms except *F and one 2D are known.

The configuration d3 has the peculiarity that the calculated electrostatic

energies for 2H and 2P are equal. In this instance these energies are not at all

equal, so that we cannot depend much on *H and 2P. However, ifwe choose

TH vnr zrn
3d 3 3d 3 4d s

Fig. 2s
. The d* configuration.
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the jF s to make the other three terms *F,
4P ?

2
fit exactly, the *H

energy is fairly good while that of the 2P is not. The values of the constants

which are obtained in this way are 1^= 1171, J4
= 83 (3J = 23,891), These

constants give for the values of the two 2D
s&amp;gt; 17,300 and 42,700 cm&quot;

1
. The

first of these is agreeably close to the 2D found by White at 16,317 cm&quot;&quot;

1
;

the second is predicted 25,800 cm&quot;
1
higher than any other level of the con

figuration, which has a spread of only 16,900 cror1 as analysed ! Hence it is

not surprising that this second 2D was not found. The intervals as usual

agree only roughly; fF fits the interval rule fairly well, and ifwe use the

given by this level (which is about an average for the configuration), the

calculated 2D intervals are 248 and 110 cm&quot;
1

;
the first of these is to be

compared with the observed interval of 147 cm&quot;
1

.

Tor the 4d3 of Zrll, in which two 2D s are reported, we obtain an ap

proximate fit of aH terms except
2P with P2

= 683, F= 36 (3.F
= 16,000).

With these values the calculated 2D s lie at 11,750 and 27,300 cm&quot;
1

,
with

separations of 593 and 309 cm&quot;
1
, respectively. These separations are

calculated using the 2
J?, which gives an average value for , as standard.

The observed 2D s lie at 13,869 and 14,559 cmr1 with separations of 734 and

435 cm*&quot;
1

. Hence we must infer that, if these are correctly classified, one of

them is very strongly perturbed. In this configuration again, d3 is com

pletely mixed up with d?&amp;lt;$.*

These are all the instances of c
3 which are sufficiently analysed for com

parison with the theory. In general we have seen that the lower 2J) corre

sponds well with the one usually observed; the second 2D is predicted

extremely high and inverted.

* The interaction between these configurations and the 2D assignments have &quot;been considered

in detail by UFFOBD, Phys. Rev. 44, 732 (1933), who finds that he can account for the discrep

ancies of Fig. 28
satisfactorily. The better agreement of *H over 2P in the above approximation

is explained by the fact that 2P is strongly perturbed by
2P s in neighbouring configurations,

whereas there is no nearby configuration which contains a 2H term to perturb the *H of d*.



CHAPTER IX

THE RUSSELL-SAUNDERS CASE: LINE STRENGTHS

In this chapter we shall develop the theory of radiation as outlined in

Chapter rv to obtain formulas for the strengths of the various spectral lines

for atoms obeying Russell-Saunders coupling. In 1 we obtain some general
results concerning the possible configuration changes in radiative processes

which are true for any coupling. In 2 formulas for the relative strengths of

lines in a multiplet are obtained as a special application of the results of

il3
. The problem ofthe relative strengths ofthe different multiplets arising

from a transition between a particular pair of configurations is treated in

the next two sections. In 5 we develop for quadrupole multiplets the for

mulas giving relative strengths of the lines analogous to those for dipole

multiplets in 2.

1. Configuration selection rules.

From the results of previous sections we may immediately obtain two

important selection rules. Since the electric-dipole moment P is a quantity
which anticommutes with the parity operator & of 1 1 6

, it follows that P
has no matrix components between states of the same parity. Hence all

spectral lines due to electric-dipole radiation arise from transitions between

states of opposite parity. This rule was discovered by Laporte* and is usually
known as the Laporte rule. Its importance lies in the fact that it remains

valid even in complicated cases where it is no longer possible to assign

configurations uniquely to the energy levels, and enables the spectroscopist
to characterize such levels as uniquely even or odd. The symbol is attached

to the quantum numbers of odd terms when it is desired to express the

parity explicitly.

Since P is a quantity of type F considered in 66
, it will have non-

vanishing matrix components only between states which differ in regard to

at most one individual set of quantum numbers. The non-vanishing matrix

component connecting states A and B which differ in regard to one in

dividual set is just the corresponding one-electron matrix element con

necting the non-identical individual sets of A and B. Prom the theory of

one-electron spectra we know that this matrix component of P vanishes

unless AZ = 1, where AZ is the difference of the Z s in the two non-identical

individual sets. Hence if the energy levels are accurately characterized by
configuration assignments, the configuration change occurring in dipole

*
LAPOBTE, Zeits. fur PKys. 23, 135 (1924); see also RUSSELL, Science, 51, 512 (1924).
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radiation is by just the nl of one electron, the change in I being restricted to 1.

Such, transitions are called one-electron jumps. Transitions are observed in

which there is an apparent change in two of the nl values (two-electron

jumps), but this is to be connected with a breakdown in the association of

configurations with levels.

With regard to quadrupole and magnetic-dipole radiation we observe

from 449 that %t andM are also quantities of type F. The restriction to one-

electron jumps also applies to them. But these quantities commute with the

parity operator &, so that they have non-vanishing matrix components

only between states of the same parity, which is just the opposite of the

Laporte rule for dipole radiation.

2. Line strengths in Russell-Saunders mtxltiplets.

The ensemble of all lines connected with transitions from one term

characterized by L and S to another characterizedby L and Sr we shall call a

multiplet. We wish now to consider the theory of the strengths ofthe lines of

a multiplet. We confine our attention at present to electric-dipole radiation.

Since P commutes with S, it follows at once that the matrix of P can

contain no components connecting states of different 8. Because of this,

spectroscopists find that they can conveniently divide the terms of most

atoms into systems of different multiplicities, e.g., a singlet system, triplet

system, and quintet system. The lines connecting terms in different systems
are in general missing or weak. For example, only one line connecting the

singlet terms with the triplet terms of helium has ever been observed, and

that with considerable difficulty. This is then the first important selection

rule of the Rmssell-Saunders case: intersystem combinations are forbidden.

In passing we note that this is also true of the electric-quadrupole and the

magnetic-dipole radiations, since the corresponding moments also commute

with the spin.

The line strengths are given by formulas 745 ifwe write ySLJ for oy . We
have the selection rule AJ= 1,0. Since P commutes with S, the depend
ence on J of the factors (ySLJlPly S L J

) occurring on the right of 745 is

given by formulas 1138 if we correlate^ with S and j2 with L. It follows

from these formulas that the selection rule on L is the same as that on 7,

namely AI/= 1, 0.

The factors (ySL\P\y SL
f

) occurring on the right of 1138 will be in

dependent of S since the states W(ySLMsML ) may be expressed as a sum

of products of a function of the electronic spin coordinates only and a

function of the positional coordinates only, and the operator P acts on the

positional coordinates only (cf. the discussion of 1 13). Hence we may write

in general S(ySLJ, y SL J ) =/( J, SL J ) \(yL\P\y
rLr

)\\ (I)
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where the whole dependence on S, J, and Jf

is contained in the function

f(SLJ, SL J ), which may be evaluated from 745 and 1138.

First let us consider the multipiets for which L =L- 1 , For these we have :

S(Y SLJ, y SL-U}
=

4*/(J-f-l)
axr

^-^-+x-,.,^ (2a)

The sum of these expressions is given by 1335 :

:r
f

L-l)^ (3)

that is, the total strength of the lines of the multiplet originating in the
level ySLJ is proportional to the statistical weight (2J+ 1) of the initial

level. Since the formulas for strengths of lines are symmetric between initial

and final states, we may regard ySLJ as the final state in the preceding
formulas; in which case they give at once the strengths for a multiplet
L = L + 1 and the sum rule says that the sum of the strengths of the lines

ending in the same final level ySLJ is proportional to the statistical weight
of that level.

For the multiplets in which L =Lwe have:

(2b)

From 1335 we learn, as before, that the sum,

ZS(7SLJ9 y SLJ )
= (2J+l)L(L+l)\(yL\P\y L)\*, (4)

of these three quantities is proportional to 2J+ 1. The corresponding sum
for the case L = L + 1 has the value

SS(y5iJJ /5i+l/0 = (2J+l)(L+l)(2i+3)I(yi:P:/i+l)|2. (5)

Thus for any Eussell-Saunders multiplet we have derived the general
result that the sum of the strengths of the lines having a given initial level is

proportional to the statistical weight (2J+1) of that initial level, and that the

sum of the strengths of the lines.having a givenfinal level is proportional to the

statistical weight of that final level This sum rule was discovered empirically
by Ornstein, Burger, and Dorgelo.*

* BITEGEB and DORGELO, Zeits. fiir PJiys. 23, 258 (1924);
OBKSTEIN and BUBGEB, ibid. 24, 41 (1924).
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Finallywe maysum these formulas over the various values ofJ associated

with the initial term. Since the statistical weight of the whole term is

(25+l)(2L+l), we find that the total strength of all the lines in the

multiplet is given by

S(ySL,y 8L) = (2S+l)(2L+l)L(L+l)\(yL:P:y L)* (6)

for the three Mnds of change in L. These formulas are symmetric in the

initial and final terms. They bear a striking resemblance to formulas 745

which express the total strength of all components of a line.

Now that we have seen how the relative intensities of the lines in a

multiplet follow from the general formulas of Chapter in, let us consider the

application to spectra and something of the historical development in this

field.

The simplest result concerns the relative strengths of the lines Z

S^*P%
and 2

5^-
2

P|.
. Since there is but one level in the S state, the sum rule tells us

that these should have strengths in the ratio 1:2. This is actually the case for

the yellow D lines of Nal and is quite generally true for the S-P doublets

of the alkalis. We consider in 515 the explanation of some departures from

this result.

In the 3P-35 triplets the sum rule predicts that the strengths of the lines

are as 5: 3 : 1 and this was found to be experimentally the case in Zn and Cd.

Generally the ratios of the strengths of the three lines M+1P5+1-, ^^Pg-,
^Ps-r25*1^ are as (28+ 3): (25+1): (25-1). This was studied* for

quintets, sextets and octets in Or I and Mnl, with the results shown in the

following table (the calculated relative intensities are obtained by multi

plying the above strengths by the a4 factors of 74
)

:

Multiplet Wave-lengths in A Relative intensity

Cr: .W-y 5208,5206,5204
( 7:5-04:3-15 Observed

Mn: ,V-i.a 6021,6016,6013 ,8:6-15:4-32 Observed

Mn: **P-.a &amp;gt;S 4823,4783,4754 |10:
8-28: 6-35 Calculated

(10:8:6-15 Observed

Doublets and combinations with 8 terms are the only multiplets in which
the strengths are fully determined by the sum rules alone. Experimentally
it was found

j however, that the sum rules are valid quite generally. The

complete intensity formulas (2) were derived by the aid of the corre

spondence principle before quantum mechanics simultaneously by Kronig,
Sommerfeld and Honl, and Russell, and quantum mechanically first by

* DOEGELO, Zeits. fiir Phys. 22, 170 (1924).
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Dirae.* Before the complete formulas were obtained, Sommerfeld and

Heisenberg j&quot;

found by the correspondence principle an important qualitative

characteristic ofthem, namely, that the strongest lines are those inwhich the

change in / is the same as that in L, These are called the principal lines of

the multiplet. Among the principal lines the strongest is thatwith the largest

J of the initial level, the strengths decreasing with decreasing J. The other

lines are called satellites. For multiplets in which L changes the satellites

may be classified into those of first order, in which J does not change; and

of second order, in which the J change is opposite to the L change. The

satellites of second order are, as a class, weaker than those of first order.

Among the satellites the strength is a maximum for intermediate values of J,

These qualitative characteristics of the multiplet intensity formulas are

naturally of great importance in helping to recognize the character of a

multiplet when a spectrum is being analysed.

For practical work it is convenient to have tables showing the relative

strengths of multiplet lines in the most important cases. These have been

calculated by Russell (loc. cit.) and by White and Eliason.J The tables of

White and Eliason are given here in Table I9 . These are essentially tables

of relative values off(SLJy SL J ) [cf. (1)] for aU J and J consistent with

a given L, L ,
and S. The largest value is in each case set equal to 100

;
the

others are sharply rounded off. Since in the theory of hyperfine structure

and in jj coupling we need tables of this same function with half-integral

values of the arguments L and L , such tables are also included.

We have taken care to speak of the strengths of spectral lines rather than

intensities in order to place on the experimentalist the burden of inferring
the values of the strengths from his observed intensities. Among the

difficulties that arise is the lack of a statistical equilibrium in the atoms of

the source
||
and a partial reabsorption ofthe light emitted in one part ofthe

source by the atoms in another part of the source. The latter difficulty is

diminished by use of low-pressure sources, but is hard to get rid of entirely.

Many ofthe experimental data on intensities are not suitable for comparison
with the theory because data are lacking with which to calculate strengths
from observed intensities.

* KRONIG, Zeits. fiir Phys. 31, 885 (1925);
SOMMERFELD and HONL, Sitz, der Preuss. Akad. 1925, p. 141;

RUSSELL, Proc. Nat. Acad. Sci. 11, 314 (1925);
DIRAC, Proc. Roy. Soc. Alll, 302 (1926).

f SOMMERFELD and HEISENBERG, Zeits. fiir Phys, 11, 131 (1922).

t WHITE and ELIASON, Phys. Rev. 44, 753 (1933).

Important references are:

DORGELO, Zeits. fiir Phys. 13, 206 (1923);

HARRISON, J. Opt. Soc. Am. 19, 267 (1929).

jj
On this point see an interesting study of conditions in theneon glow discharge by LADENBTJRG,

Rev. Mod. Phys. 5, 243 (1933); see also SCHTJTZ, Ann. der Phys. 18, 746 (1933).
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TABLE P.
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16
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continued.
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For further comparisons between theory and experiment we may refer

to the work of Freriehs, of van Milaan, and of Harrison.*

3. Multiplet strengths in a transition array,f

We now consider the problem of finding the relative strengths of the

iniiltiplets which result from transitions occurring between two configura

tions. Formulas 296 express the total strength of a multiplet in terms of

j(y.L:P:y Z/)J
2

,
so our problem is reduced to the evaluation of these quan

tities*

If the two configurations are expressible in the form I-f II and I-fIV

respectively, we may use the results of I8
, in particular 1 8

16, to reduce our

problem to that ofthe relative strengths ofthe multiplets in the transitions

from configuration II to configuration IV. If the two configurations are not

expressible in this form, we cannot proceed by matrix methods (except for

two-electron configurations, ef. 68 17) but may use the method of 49
.J

The quantity we must evaluate is

\tf&&^SlFL\P\y*S lL^S*IPL )\*. (I)

According to 1818
5 this vanishes unless y

1 ^1Llsy 1 ^ 1 !/1
; i.e. transitions

are forbidden between terms built on different terms of configuration I.

If the terms of configuration I are the same, (1) reduces to

1 (y
1 S*Ify&8lF LIP11

:?
1 S1

Ity* S11L11L
)\*. (2)

From the considerations of I 8
,
we see that we can evaluate this expression

by means of I1 3
8, treating F11 as a vector which commutes with L1 and Su .

Hence this vanishes unless SIV = S11
, in which case it is the same function of

L*LIV
L, IfIPL as

\(Y 8LJ\P\y SL J )\* is of SLJ
9
8L J . On com

paring 745 with 29
6, we then see that the total strengths of the multiplets are

given by

= (25+1) f(&IFL, L1 IPL ) ((y^l^PJV1^11
)!

2
, (3)

where the function /is defined by 29 1. If we sum this expression over the

various values of L and L which are consistent with the given values of

L1
, L11

, and iiv
, we obtain, in analogy with 29

6,

*
FBERICHS, Ann. der Phys. 81, 807 (1926);
VAN MILAAN, Zeits. fur Phys. 34, 921 (1925); 38, 427 (1926);

HARBISON, J. Opt. Soc. Am. 17, 389 (1928).

f JOHNSON, Proc. Nat. Acad. Sci. 19, 916 (1933); SHOKTLEY, ibid. 20, 591 (1934). Following
Harrison, we shall call the totality of lines resulting from the transitions between two configura
tions a transition array.

J For example, these considerations are applicable to the transitions between d2 $p and d2
s\

but not to the transitions between dz sz and d* s.
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The last S here is the total strength of the multiplet y
iy S1*LW-^Y

U&1 IfL

in transitions between configuration IV and configuration II; it of course

contains a factor S($
IV

,
S11

). We shall now discuss these formulas by means

of illustrative examples.

Addition of an electron to an ion.

The set of all lines arising in transitions between two polyads (
28

) having
the same parent configuration is known as a supermultiplet. The relative

strengths of the multiplets in a supermultiplet are given by (3) if we let

y
1 ^1 ^1

represent the parent term of the ion, y^L1^ = nl and y&IP^n l
,

the nlvalues ofthe jumping electron in the initial and final states, and &11 = i.

In the first place we see that transitions between polyads based on different

parent terms are forbidden. For an allowed supermultiplet,

S(yiSiI?7rfS,)J#!?ttTLO^
(5)

The last factor here is just the factor which arises in connection with the

intensities in one-electron spectra and which was evaluated in 653. It-

vanishes unless V = I 1, in which case it has the value

(nl\P\n
r

l-~l}^$(nl,n l~-l)~ ^=rrE(nl)R(n
f

l-l}dr. (6)*

v4P-lJo
The functions/are given by 292 according to the definition 29 I. The relative

strengths of the, multiplets in a supermultiplet are thus the same functions of

U-IL, IZl L asthe relative strengths of the lines in a multiplet are of SL /,

SL J . These relative strengths are thus given by Table I 9 with this

correlation.

For example, the relative strengths of the multiplets in the

Ti I d* 4s (*F) 5s 5F-*d* 4s (*F) 4$
5DFG

supermultiplet are the same as the relative strengths ofthe lines in a 7
$~&amp;gt;

7P
transition, namely 50:70:90. Several carefully determined measurements

of relative strengths of multiplets in supermultiplets have been made by
Harrison* with good theoretical agreement. For example, for the above

supermultiplet of titanium he finds the relative strengths 53:70:89. The

maximum discrepancy of 6 per cent, between these and the above values is

probably little more than the experimental error.

This relation for the relative strengths of the multiplets of a super

multiplet was first obtained by Kronigf from the correspondence principle

in 1925. It was apparently independently inferred from the experimental

data by Russell and MeggersJ in 1927 when they called attention to the

* HABEISON, J. Opt. Soc. Am. 19, 109 (1929);
HABEISOK and ENGWICHT, ibid. 18, 287 (1929).

f KBOOTG, Zeits. fur Phys. 33, 261 (1925).

J RUSSELL and MEGGEES, Sci. Papers Bur. of Standards, 22, 329 (1927).
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striking similarity between the visually estimated relative multiplet in

tensities in a dd-*dp triplet supermultiplet of Sell and the theoretical

relative strengths of the lines in a 5
D-&amp;gt;

5P multiplet.

Now let us consider the relative total strengths of the various super-

multiplets in a transition array between two configurations formed by

adding an electron to the same parent configuration. The total strength of

a supermultiplet is obtained from (4) if we make the same correlation as we

did in (3) to obtain the relative strengths ofthe multiplets. This immediately
shows that the strengths of the different supermultiplets in a transition array

are proportional to (2$-f l)(2L
l+ 1), where If is the L value of the parent

ion and 8 the multiplicity of the supermultiplet. For example, in the tran

sition airayjp
2

&amp;lt;s-&amp;gt;3)

2
2?, the relative total strengths ofthe four supermultiplets

are 2: 6: 12: 10, as seen from the following table:

p
2P 2.1

-. WD 2.3
*

l4r&amp;gt; ^ 4.&amp;lt;7z&amp;gt;n 4^3

2.5

Experimental data on relative strengths ofsupermultiplets are almostnon

existent. A comparison of the intensities of a quartet and a sextet super

multiplet is furnished by Seward* for the case of the quartet and sextet

supermultiplets of Mill 3d6 (
5
D)4p-&amp;gt;3d

6
(

5
D)5s. The relative strengths of

4
jF,

4D, 4
P~&amp;gt;

4D are the same as the relative strengths of the lines in 5
P-&amp;gt;

5
$,

namely 7:5:3. The multiplets
eJ7

,

6D, 6
P-&amp;gt;

6D should be
-|
as strong as these,

i.e. 10|:7|:4|-. When these values are corrected by the actual &amp;lt;r

4 factors of

Mn I, the theoretical relative intensities ofthese six multiplets for excitation

at infinite temperature are given by Seward as

382:354:259:1380:777:754.

The measured intensities, when corrected for the actual distribution among
initial levels by an assumption of a Boltzmann distribution at the most

favourable temperature, are given by Seward as

381 : 400: 278: 1328: 740: 819.

The agreement is quite good, considering the difficulty in temperature cor

rection and intensity measurements for lines of rather different frequencies

originating in levels of different energy.
We have thus solved completely the problem of reducing to the radial

integral (6) the strengths in a transition array in which the jumping electron

is not equivalent to any in the ion. It should be pointed out that this solves

in particular the problem oftransitions between two-electron configurations

* SEWABD, Pfcys. Rev. 37, 344 (1931).
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neither of which is composed of equivalent electrons, since such transition

arrays contain only two supermultiplets a singlet and a triplet. For ex

ample, the relative strengths of the multiplets in either superniultiplet for

ps-^pp are the same as the relative strengths of the lines in 3
$-&amp;gt;

3P3 but the

triplets have thrice the strength of the singlets. The line strengths in this

array are given in Table 29
. In transitions between two-electron configura

tions, at most one can be composed of equivalent electrons; from 6817 we
see that the above considerations are true for the unexcluded multiplets of

this case also, except that all absolute strengths must be multiplied by 2.

Thus, e.g., the unexcluded multiplets of ps-*p* have the same relative

strengths as the corresponding multiplets ofp$-*ppl see Table 29
.

TABLE 29
. Relative strength of the lines in ps-*pp and ps-*p

2 in LS coupling.

Invariant sums are shown in parentheses. The signs of S* are indicated.

PP

3Pn

(10) (10) (30) (30) (30) (30) (50) (50) (50) (70)

^ s^n

(20)

120 \

1(180)

60)

(100)

(20) (20) (60) (100) (100)

The J-file sum rule.

We now derive a sum rule which applies in the case we have been con

sidering in which the jumping electron is equivalent to none in the ion. For

each multiplet the sum of the strengths of lines originating in a given level

is proportionalto its statisticalweight 2J+ 1 .Wemay byformulas analogous
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to 2 9
3, 4, 5 sum (5) over L to find the total strength, of the lines of the array

which originate in the term y
1 U-^nlS L. This sum has the value

which depends on the initial term only through its statistical weight
(2S+ l)(2i-f 1). Hence the total strength of the lines of the transition array

originating in (or terminating on) any level is proportional to the statistical

weight 2J+lqf that level. This statement, which we shall see in Chapter xi

holds for any type of coupling, we shall call the J-file sum rate .(we call

any row or column of a transition array such as that of Table 29 a J file).

We shall show in 411 that even if the jumping electron is equivalent to

other electrons in one of the configurations, this sum rule still holds for

the J files in one direction in the transition array.

More general configurations.

As an illustration of the use of formulas (3) and (4) for transition arrays
in which the jumping electron is equivalent to one of the others, we may
consider the strengths in the case d2

sp~*d*p*. By (3) and (4) any group of

electrons which remains intact during the transition, such as d2
here, may

be eliminated, and the problem reduced to transitions between the remaining
electrons, as to sp-^p

2
. The allowed transitions for d2

sp-&amp;gt;d
2p2 are

Is p (1?) IP -+yfi (IS)
* 8 = 1 ^P-^S)

(sppp _^ (ap)3p g

3 p PP) *SP-*pz
(i)

3P 9
^ 45 (P-+Z) (8)

(
8
P) 1SPD-+ (

3
P) i^PD 9

(
3P-^3

P)
27

(

3
P-&amp;gt;

3
P)

45
(

3
P-&amp;gt;

S
P)

It is convenient to consider together all multiplets of the same multiplicity
which are based on the same terms ofd2

, sp, and#
2

,
and which are analogous

to supermultiplets. Each arrow in the above represents one such group. If
we let & S1

represent the term of d!
2

,
LIV SIV the term of sp, and Lu S11 the

term ofp
2

, (3) shows that the relative strengths of the multiplets in a group
are the same as the relative strengths of the lines in the multiplet SL-&amp;gt;SLr

,

where S = If
t
L = L^

3 and L = IP. These multiplets are indicated at the

right of (8). The relative total strengths of the different groups are to be
obtained from (4) in terms of the known relative strengths of the multiplets
in the transition
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In this way, e.g., for the last entry of (8), 2S -f 1 = 5, 2U-+ 1 = 3, 2S11 +1 = 3,

S(sp
3P-j92 3

P) = 9. Substitution in (4) gives 45 for the total strength ofthe

group. Thus the relative strengths of the multiplets in a group are the same
as the relative strengths of the lines in the multiplet in parentheses at the

right of (8), and the relative total strengths of the different groups are given

by the numbers in italics.*

4. Multiplet strengths obtained from spectroscopic stability, f

We have obtained very simply the strengths of the multiplets for con

figurations in which the jumping electron is not equivalent to any other

electron in either configuration or is equivalent to one other electron in

only one of the configurations. We have also been able in many cases to

reduce the problem to a simpler one. But we have not been able to

handle such transitions as p2 s
-&amp;gt;_p

&2 orp2
s~*p% 3

to name two of the simplest.
It is possible to determine these strengths from the principle of spectro

scopic stability in much the same way as we determined the electrostatic

energies from the diagonal-sum rule.

As shown in I9
, the only transitions possible are between configurations

which differ in regard to but one electron, which has quantum numbers n I

in one configuration, and n I 1 in the other. We calculate first, in the zero-

order nlm/rit scheme, the absolute squares of the matrix components ofF
connecting these two configurations. There are no components connecting
states which differ in regard to the quantum numbers of more than one

electron. By the results of 66 a non-vanishing matrix component is simply
the corresponding matrix component ofthe one-electron problem (

6s
)

. This

is given by the formula

l) J (1)

where s is given by 396. Thus all the squared matrix components ofP may
be expressed as multiples of s2 .

Now let us consider the squared matrix components of P connecting
these configurations when expressed in the 8LMSML scheme. All of these

are expressed in terms of the quantities j(y$ L\P\y8 Z/)|
2

, which we are

seeking, by means of the formulas 9311. The states of the zero-order scheme
are related to those of the SLM8ML scheme by a unitary transformation

which has non-vanishing components only between states of the same Ma

* if we had substituted in (4) the absolute strengths of the multiplets in the array sp~+pz
,

we should have obtained the total absolute strengths of these groups in terms of the radial

integral (6).

f CONDON and UFFOED, Phys. Rev. 44-, 740 (1933).
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and ML . Therefore we may apply the principle of spectroscopic stability

2225 to the squared matrix components occurring in any box of which the

rows and columns are labelled by the same valuesoM8 andML in the two

schemes. This enables us to equate the sum of the squared matrix com

ponents in a particular box in one scheme to the corresponding sum of the

squares in the other scheme. In this way a set of equations is obtained

which is usually sufficient to determine the quantities \(yS L\P\y SL )\* 9

from which we obtain the multiplet strengths by 29
6. Analogous to the

limitation of the diagonal-sum rule for energy, the method gives complete

specification only when there is but one multiplet of each kind occurring.
If there are several multiplets of the same kind, the method determines only
the sum of the strengths.

We shall illustrate the method by consideration ofthe configuration array

p*-+p*s |n Russell-Saunders coupling. Only one component occurs with

lfg =Jf^ = f and -^=0, ML =l. In the zero-order scheme this is the

transition (1+0+ ~l+)-&amp;gt;(l+0+ 0*), for which the squared matrix component
of P is s2 by the formulas. In the SLMSML scheme this is the transition

(*S, f , 0)-(
4P

3 f, 1); the squared matrix component being, by 9311,

Hence we infer that

This result may be checked from the component having Ms~M
f

s
=
%ML=M^0.

In the same way we may pass to the part of the matrix associated with

M
8
=M^

=
J and find in the zero-order scheme that the coefficients of s 2 in

the squares ofthe non-vanishing matrix elements ofP are given by

The table need not be extended to negative values ofML unless this is

desired for checking. The corresponding portion ofthe table in the SLM8ML
scheme, in which the numbers are the factors which multiply the corre

sponding quantity of the type l(p**D\Plp*s*P)\*} is
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Applying the principle to each of the boxes, we obtain a set of equations

which lead to results

for the coefficient of s2 in the value of \(p*SL\P\p*8SL )\*.
The total

multiplet strengths, given in terms of this quantitj
7 by formidas 296

?
are

TABLE 39 . Relative multiplet strengths.

The terms of the first configuration are placed on the left, of the second, at the top, of the boxes.

Only allowed transitions are listed, and where two or more nraltiplets of a kind occur, the sum of

the strengths is given. In the same transition array, values in boxes of different multiplicities are

to be directly compared.

&amp;gt;p

4 s2 or p $

3P

2 4Z)

3 2
Z&amp;gt; 2 2P

3 3
i&amp;gt;

2 3P
120

!

45 !

15
i



252 THE EUSSELL-SAUNBBBS CASE: LINE STBENGTHS 49

given in Table 39 , together with the relative strengths of the multiplets in

other simple transition arrays which cannot be solved by the formulas of 39
.*

The method of this section has the disadvantage, not shared by that of

39
, of being capable of giving us only the amplitude of the electric-moment

matrix. This is of little use for cases of departures from Russell-Saunders

coupling as discussed in Chapter xr, since to effect a transformation of this

matrix from LS coupling to an intermediate coupling we need to know the

correct phases of the matrix elements in a definite scheme of states. Such a

calculation of the electric-moment matrix may be made if we know the

eigenfunctions oftheLS -coupling states in terms ofthe zero-order states. In

order to separate two like multiplets in cases not amenable to characteriza

tion by parentage we must also go to the eigenfunctions, just as we did in

78 to separate the energies of the two 2D }

s of d3 * Several of the arrays of

Table 3 9 are taken from a paper by Ufford,f who calculated them by first

obtaining the eigenfunctions.

5. Quadrupole multiplets.

Let us now obtain the strengths of the lines in a quadrupole multiplet,

as we did for the dipole-multiplet in 29
. In 64 we were able to find the

dependence onM ofthe quadrupole-moment matrix components by building

them up from the dipole matrix components of 93 1 1 : here we may repeat the

process by applying II 3 to find the dependence of the matrix components
on L and 8 in the SLJ scheme.

After the matrix components are found the strengths of the quadrupole
lines may be found by 747. This gives us a set of formulas (Table 49

)
for

quadrupole multiplets analogous to 292 for dipole multiplets. In the process

of squaring, the sign of the matrix component is lost, so in Table 49 we give
the sign in a separate column. If one wants to know one of the matrix

components D, E, F occurring in 747, he can find it from the strengths by

dividing by the appropriate factor in 747 and attaching the sign here given
to the positive square root of the quotient. G

3 H, I are related to the matrix

components of r
t , where 92= eSrt-ri? as follows:

= - e S JS [(a 8 Ljr,:**S i)(a&quot;
S J&ftja S L)

of

* A very complete set of tables of relative multiplet strengths is being prepared byMr Goldberg,
of the Harvard College Observatory; this will probably be published in the Astrophysical Journal
in 1935. f UJTFOBD, Phys. Rev. 40, 974 (1932).
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The strengths of Table 49 were calculated by Rnbinowicz*, who showed
that they obey the sum rule of Ornstein, Burger and Dorgelo, namely, that

the sum of the strengths of the lines in a multiplet from a given initial (or

final) level is proportional to the statistical weight, 2J+1, of that level.

TABLE 49 . Strengths of guadrupole-multiplet lines.

Here P(J), Q(J) 9 and R(J) are the factors used in IPS with the correlation j-^Jy jl~^S,j^L.

There is very little experimental material available for testing these

formulas. The relative line strengths in some of the 2
D-&amp;gt;

25 quadrupole

* RTJBINOWICZ, Zefts. fur Phys. 65, 662 (1930).
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doublets in the alkalis have been measured by Prokofjew* and found to be

3 : 2 in accordance with theory. The difficulty is that multiplets violating the

Laporte rule may arise because the atoms are disturbed by electric fields in

the source, in which case the line strengths are given by other formulas

(317
, especially 317

5). The place where quadrupole lines are of importance
is in the spectra ofnebulae or rarefied stellar atmospheres where the mutual
disturbance ofneighbouring atoms is negligible. In fact the most interesting

developments in this field grew out of Bowen s interpretation of the nebu-

Hum lines as quadrupole lines. This we consider in 511 because these lines

are combinations between terms of different multiplicity and so owe their

existence to the departure from Russell-Saunders coupling.
There are two good examples of quadrupole multiplets in the Fell

spectrum found by Merrillf in the spectrum of the star ^-Carinae. They are

3rf
5 4s26 $-&amp;gt;3d

6 4s 6.D and $d*4s*G-+3dF. The intensity data are merely

eye estimates from plates taken in Chile by Moore and Sanford. For the

former there are five lines having the same initial level and ending on the

five levels of the 6D term. By the sum. rule the strengths are proportional
to (2J+ 1) for the final level. If we take Merrill s intensities divided by
numbers proportional to Q

(2J+ 1), the quotient should be constant. The
values are 6 .2 ? 6 .6 6 . g ^
the ? being due to disturbance by another line. This is surprisingly good

agreement, probably accidental in view of the lack ofphotometric measure

ments.

For the other multiplet the agreement is not nearly as good. In the table

we give for each line the observed relative strengths (intensity divided by
a6), the theoretical relative strengths, and the ratio, observed to theoretical.

The latter should be constant in any one row as these lines have a common

*
PBOKOFJEW, Zeits. fur Pliys. 57, 387 (1929).

t MJERBTLL, Astrophys. J. 67, 405 (1928).
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initial level. The sum of the observed strengths from ^Gfij. divided by 12

is 4-4, which would be equal to the sum from 4
(?| divided by 8, which is 2-75,

if the temperature were infinite. The observed ratio, ifwe assume a Maxwell-

Boltzmann distribution of the atoms, corresponds, jbo a temperature of

1600 K.

We now consider the absolute values of the quadrupole strengths. The
methods developed in the preceding two sections could be taken over with

proper generalizations to treat the corresponding problems for quadrupole
lines. Such developments have not been carried out in detail because the

possibility of experimental verification seems too remote. We confine atten

tion to the case of one-electron spectra, which is directly analogous to the

work of 65 and 9s
. The problem is to express the coefficients, G, H3 and I,

of the formulas for line strengths in terms of the radial integral

&amp;gt;= -efr2
R(nl)R(n l )dr, (I)

Jo

which obviously will measure the second-order moment of the charge dis

tribution. This may be done by calculating, by direct integration, one of the

matrix components (nlms l\ \n l m8 l
f

)
in the nlmsmi scheme. Then, since

for ms
= H- J and m^l we have

we know that this is also equal to (?i?Z+|?-f|| \nf I I*+%V+%) in the nljm
scheme. The same matrix component can be expressed in terms ofD y E,

or P from 646, so by appropriate choices D, U, and F and the coefficient of

|Q in 646a can all be found in terms of s2 . Then by combining 747 with the

table of strengths of this section we can find G, H3 and I in terms of s2 ,

which is all we need. The work is a little tedious but straightforward. It is

clear that for a one-electron spectrum H= 0, otherwise the parity selection

rule would be violated. The values of G and I found in this way are

g-
-
-

4 (21
- l)V(2Z+l)(2Z-3)

Combining these with the table ofstrengths we have the means ofexpressing

in absolute measure all the strengths of one-electron doublet lines.

It is convenient, as in 65
5, to express the numerical coefficient in the

quadrupole transition probability in atomic units. In 748, if we measure a

with the Rydberg constant as unit, and S(^l, J3) in atomic units, e2a4, we

may write
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The numerical coefficient is about one-millionth, of that for dipole radiation

(6
5
o). To exemplify the formulas just presented, and also to gain a better

appreciation of the order of magnitude of quadrupole transition pro

babilities, we shall calculate A(A,) for the 3^-&amp;gt;Is doublet in hydrogen.
First we find that the radial integral

2
= I

J o

hence I2= 37
/2

19
, from which, using the table of strengths,

S(3c%-&amp;gt; l*j)
= 3.38/2

13
;

S(3dj-&amp;gt; l*j)
= 2.38

/2
13

.

These are in the ratio of the statistical weights as the sum rule demands.

For this line we have cr = f so the spontaneous emission transition pro

bability of either line is

From Table 55
,
the closely analogous dipole transition probability is

A(3p-*la)= 1-64 x 108 sec-1,

which is about 0-27 x 106 times as great.

In hydrogenic ions of nuclear charge Z we have &amp;lt;rccZ
2 and r oc-Zr1

,
so the

dipole transition probability varies as Z* while the quadrapole transition

probability varies as ZQ
. In all actual atoms the quadrupole transition

probability remains smaller than the dipole, although for 2=92 the ratio

is only 1 : 32. As a consequence of this trend quadrupole transitions are

sometimes of appreciable intensity in X-ray spectra. For the higher values

of Z the calculation should be made using the relativistic radial functions

of 55
,
but our result shows the trend in order of magnitude.

In view of the great ratio of dipole to quadrupole intensity it is out of the

question to observe quadrupole lines in the hydrogen spectrum. In the

alkalis, where the terms are well separated, this is possibleand the s -*d series

is easily obtained in absorption. Stevenson* has calculated the transition

probabilities from the normal 8 level to the lowest D doublet for the alkali

metals using Hartree wave functions. Experimental values were obtained

by the anomalous dispersion method by Prokofjew.f His values have to be

divided by four because of a difference in the theoretical formulas for quad

rupole and dipole dispersion4 The final values of 106 times the ratio of the

spontaneous transition probability for the first D~*S quadrupole line to

that for the first P-&amp;gt;S dipoie line are

Na K Rb Cs

Observed 1-1 1-5 2-7 0-6

Calculated 3-5 2-5 2-9

* STEVENSON, Proc. Roy. Soc. A128, 591 (1930).

f PROKOFJEW, Zeits. fur Phys. 57, 387 (1929).

j This was pointed out by KUBINOWICZ and BIATOST, Ergebnisse der exakten Naturwissen-

schaften, 11, 216 (1932).



CHAPTER X

jj COUPLING

The most direct method of solution of the first-order perturbation problem
would consist of the diagonalization of the matrix of electrostatic plus

spin-orbit energy for a given configuration in the zero-order scheme. That

procedure one might call impossible for all but the very simplest con

figurations because of the high order of the resulting secular equations. The

general solution is possible for a great many more cases if one uses the

SLJM scheme, but in order to utilize this scheme one must, except in

special cases, obtain the transformation to it. Because of the complexity of

the problem and the impossibility of obtaining the general solution for

complicated configurations, it is desirable to obtain as much information

as possible of an elementary, although approximate, character. In the pre

ceding three chapters we have considered the important case in which the

spin-orbit interaction isweak compared to the electrostatic ; in this chapter it

will be interesting to consider the less important case in which the electro

static interaction is weak compared to the spin-orbit. In this way we shall

know the character of the general solution at both extremes.

1. The ^&quot;-coupling
1 scheme and the spin-orbit interaction.

We wish to determine the first-order energies which result from the spin-

orbit interaction, when the electrostatic interaction is absent. Since the

spin-orbit interaction HI=^Hi= f(r^L^S, (I)
i i

is a quantity of type F, it is diagonal in the zero-order scheme in which

riljm are taken as the electronic quantum numbers. This, then, is the

natural scheme to use when considering this interaction. The diagonal
element for the state A = a1

. . . aN is given by

(A \H*\A)=S (n*Fj*m*\H*\n? I*? mf)

(cf. 45), which depends only on the values of 71*1*j*.

Although H1 is so highly degenerate as to be diagonal in any scheme

specified by the set ni
l
i
j

i
&amp;gt;

it is most convenient to consider the particular

scheme in which the fs have been combined to form resultant J and M.
The scheme characterized by the set of nH^ and JM is known as the jj-

coupling scheme. It may be here noted that although this designation

utilizes more quantum numbers than the i~coupling scheme, it still does

not in general furnish a complete set for more than two electrons.

CS 17
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The process offinding the allowed levels iajj coupling is similar to that in

LS coupling, depending in the same way on 46
1. For example, consider

the configuration npn p. Here j and / may take on the values J and f .

If ;
= i / = i (m,m ) may have the values (J,J), (|, -J), (-$,J), and

( 1&amp;gt; i). For the first of these states M=l, and since this is the highestM
occurring for j = | 3 j = |, there must be a level J= 1. There are two states

with Jfef = 0; the level J = 1 has a state Jf=0 and there must in addition

be a level with J=0. The one state with M= 1 is taken care of by
J&quot;=I. Hence we infer the existence of the levels wpin pi, J=l, 0. In a

similar way the levels for the other values of j, / are determined in the

following table. In the body of the table are given (ra, m ),
while at the foot

of each column are given the resulting J values.

(3)

These J values check with those obtained in I7 for this configuration,

namely
1SQ ,

2
Si,

1P1?
3P

,i,2&amp;gt; ^gj
3
A,2,3- They could equally well have

been obtained by the usual vector-coupling picture: j = f and j = f can

combine to give a resultant J= 3, 2, 1, 0, etc. Just as in L$ coupling, the

resultant levels cannot be obtained in this way if there are equivalent

electrons. For the configuration np\ (3) becomes modified as follows:

(4)



(16)

* it,*- k-p (8)

(8)
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These J values agree with those previously found, namely
1SQ ,

3P
,i,2? *A2-

Because of the symmetry which obtains, the half of these tables for lf&amp;gt;0

will usually give one all the information desired.

The spin-orbit energies for these states as calculated from (2) are

(5)

P
a

: J = !,/ = : U (6)1

I * -iU (8)} (6)

* * -2CW (1)1

(The numbers in parentheses at the right denote the degeneracies of the

energy levels.) Thus we see that p* is split by the spin-orbit interaction into

three equally spaced energy levels, whilepp is split into four energy levels

whose spacing depends on the relative values of np and n.

p . In each case

the centre of gravity of the configuration remains at zero. This is a general

property of the spin-orbit interaction, which follows from the theorem

given in 37 about the centre of gravity of a term. In 37 we calculated the

diagonal elements of H1 in the LSJM scheme and found that their sum for

each term, and hence for the whole configuration, was zero; by the diagonal-
sum rule the sum of the eigenvalues ofH1 must have this same value.

2. The addition of a weak electrostatic interaction.*

We shall now determine the effect ofthe addition of an electrostatic inter

action which is sufficiently weak to be considered as a perturbation upon the

degenerate spin-orbit levels. We must then, in 1 103 and 1104, calculate that

part of the matrix of electrostatic energy which refers to each column, and
determine its eigenvalues. But the electrostatic energy is diagonal with

respect to J and independent ofM , so that there will occur one eigenvalue
for each J, with a degeneracy of 2J+ 1 . Hence unless a given J occurs more
than once per column, these eigenvalues can be determined by the diagonal-
sum rule from the diagonal matrix elements.

We therefore need the diagonal elements of the electrostatic energy

)-e/r&amp;lt;, (1)
i&amp;gt;j i&amp;gt;3

LSTGLIS, Phys. Rev. 38, 862 (1931).

17-2
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in the nljm scheme. From 7S7 this element becomes

(A\Q\A) ^
= S r/fe*Z^*)&^^^^

l, 2)^

= S T(n*V^*,n*B?nf). (2)
&&amp;gt;*-!

Each ofthe ^ s of (2) mustnow be expressed by 458 in terms ofthe ^(nlm/n^
in which case we obtain a sum of terms of the type 86 1 which have already
been evaluated. We shall content ourselves with giving Table I10

, as

calculated by Inglis, of the quantities T(riljm 9 n l
f

j
fm

)
in terms of the

Fk
(ril,nT) and Gk

(ril,n l
r

)
of 86

15, for s, p, and d electrons.

For example, for the configuration nprip the electrostatic energies are

found from 1 103 and Table I10 to be

npn pi t;=|, i;

/

=f;J=3: F + -F2 -&amp;lt;?
- Gz

0:

2: F -
0, (3)

0:

In the approximation we are considering FQ need not be small since it occurs

uniformly in all diagonal elements and all energies. It serves merely to

raise the whole configuration and may be considered as a constant inde

pendent of coupling. In the case of np
2 we have

0:

In Fig. I10 these levels are compared schematically with those of

Chapter vn for this configuration in LS coupling. The / values occur in

the same order on each side, and as the parameters are continuously varied

we shall see in 311 that the two sides of Fig. I
10
grow into each other in this

order. That two levels of the same J value cannot in general cross when one



TABLE ll &amp;gt;. T(nljm, n l j m ).

Che numbers given are to be used as coefficients for the integrals at the top of the column. To eack
of these T s is to be added F (nl, nT), which is omitted from the table for convenience.



262 ii COUPLING 21

parameter is varied has been shown by Ton Neumann and Wigner.* The

sums of the electrostatic energies In the two limits (weighted by 2J-fl)

are equal as required by the diagonal-sum rule.

$ ,Q- o-

-&
*

* 2 S
-5-

* 5

(A) (B) (D) (O

Fig, i 10 . Limiting eases for j?
2

; (A) No spin-orbit interactioxx. (B) Weak spin-orbit
interaction. (C) Xo electrostatic interaction. (D) Weak electrostatic interaction.

3. Eigenfonctions.

The energy levels which result from the spin-orbit interaction are

characterized for a given configuration by a set of j values, and are de

generate with respect to J and M. If a weak electrostatic interaction is

applied, these energy levels are split into levels characterized by J values.

Let us for convenience call the set of states characterized by a given set

ofJ values a (jj-coupling) term/ in analogy with the terms in LS coupling.

We shaE use a notation in which we represent the three possible terms of

the configuration 2p
3
by 2p|2p|, 2p|2yj,

and
2p|.

The subscripts denote

the j values of the electrons, the superscripts the number ofelectrons of the

same nlj values.

The exclusion principle operates in jj coupling in a slightly different

fashion than in LS coupling. All terms for which not more than 2J+1
electrons have the same nlj value are allowed. However, not all the levels of

agiven term as given by coupling thej s vectorially are allowed unless all the

nlfs are different. The eigenfimctions for Jj coupling may be found by any
of the methods used in Chapter vin, but we can in general obtain more of

them by coupling vectors than we could there. For example if, as in I8
,
we

couple the terms of two configurations to get terms of a new configuration,

* VOF XEUMAI^ and WIQXEB, Phys. Zeits. 30, 467 (1929).
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all the J s obtained by coupling the allowed J1^ and J^ s will be allowed

and the eigenfunctions may be found as in 68
provided that no nlj Yalue

occurs in both I and II. This is less stringent than the L5-coupliBg require

ment that no ril value occurs in both configurations. Thus we may find the

allowed J values for any term if we know the allowed / values for terms of

the type nfj . These are given in Table 210 . Thus we see that the three allowed

levels of np\np^ are

w
.p|(0)ttpj(i), I and

wp| (2)^(4), f and f.

Here in parentheses are given the J values of the groups of nZJ-equivalent

electrons, and at the end the resultant J values.

TABLE 2W. Allowed J values /or groups of nlj-equivalent electrons.

In coupling two equivalent electrons, all J values are allowed ifj
1^^

2
.

i=j*9 the states resulting from the coupling are as in 68 either anti

symmetric or symmetric according to whether J is even or odd. Hence only

the even J values are allowed ifj=f. The use of vector-coupling formulas

for obtaining matrix elements between two states of the configuration i
2
is

considered in detail in 612
. Let us here consider, for use in the nest section

on line strengths, the matrix components

(nljnW JM\I\nlj*n lT J JT) = (jj \F\ff) (1)

of J1=
.Fj -f 1*2 connecting the states of nl2 and nlriV. Ifj=/, we see from

a consideration similar to that which gave 6817 that

where the matrix component at the right is between states in which the

individual electrons hare definite quantum numbers, and is hence amenable

to the use of the formulas of Chapter m. Ifj = /, we see from the relations

T(Z?nZf JJf) =2-^KZ^ 7i2y; JM) -^W^MJM)l

Y(nZf rilf JM )
= HtflnAJj nJ JM

}
- j(nj n&ft J M )]

that

j f) = i
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In tlie last term here, the order of the quantum numbers is significant, and

must be reversed by the use of the relation 1437:

=
(
- l)^-JMhJ

^&amp;lt; (
3

)

In this way we find

(jj IFiff) = StfJ ) Ch/s!*
1

,!^-?)
-

so&quot;,/) (
- iX-^Oitt* !)

0V/) (*)

4. Line strengths.*

Line strengtlis in jj coupling may be found by methods similar to those of

Chapter ix for L8 coupling. Their main application isin the rare-gas spectra

(Chapter xm) 3 where only the strengths for two-electron configurations are

needed. We shall first briefly consider transitions between the two two-

electron configurations n^P-nl and riWnT. If the jumping electron has

different nlj from the other electron in both configurations, we may use the

formulas 1 188 to evaluate the quantities

Kn^PfnljJlPln^nTj J
)| (1)

which are needed in 745 to give the strengths of the corresponding lines. In

this way we obtain, as in 2*1,

s(fj*W J } =/(j
1jW HK^XZ f)!

2
- (2)

Hence the relative strengths of the lines in the *multiplet* connecting the

terms f-j and j
1/ are the same as those in L8 coupling for the multiplet

SL~*SLf

with the correlation 5-^j
1

, L^j, L -*j except thatj is always,

L never, half-integral. They are thus given by Table I9 for half-integral L.

The total strengths of the multiplets are given as in 395 by

S^V) = (2f+ !)/(& 8lj ) \(^:P:nT)\^ (3)

which reduces all the intensities to the single matrix element 396. If one of

the configurations is composed of equivalent electrons, say that wi^n1
?,

we see from 31@2 that the allowed lines when j=j1 have twice the strength

of the corresponding lines for non-equivalent electrons, and from 3104 that

whenj^j1 either S^jJ^j J ) or Sfjj
1JJ1// ), whichever occurs, has

the same intensity as S^jJ^fJ )
for non-equivalent electrons. These

calculations are illustrated by Table 310 of the relative strengths of the

lines in ps-^pp andp#-&amp;gt;p
2 in jj coupling.

More generally, formula (2) is applicable, if we write J1 for j
1
, to

transitions between the levels resulting from the addition of electrons of

quantum numbers nlj and n Vj* to any ion in a state of resultant angular
momentum J1

, if none of the electrons in the ion has quantum numbers

nlj or n lj *

* BABTLETT, Phy. Rev. 35f 229 (1930).
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TABOJ 310. Relative strengths of the lines in p -*jp p and p s~*p
z in jj coupling.

Invariant sums are shown in parentheses. The signs of S are indicated.

PP

i,i 1,1 i,i
x if1

I,!
1 M1

i,i
2

f,i
2

I,!
2 M3

.0
4.4

I,*
1

(30)

(90)

(90)

(150)

(10) (10) (30) (30) (30) (30) (50) (30) (50) (70)

I.*
8

4,4

ps

(20)

kl80)

100

(100)

(20) (20) (60) (100) (100)



CHAPTER XI

INTERMEDIATE COUPLING

We have calculated tie first-order energy levels and line strengths in two

limiting cases: the Russell-Saunders, or JtS-coupIing Hmit s in which the

electrostatic energy predominates, and the jj-coupling Emit, in which the

spin-orbit energy predominates. Practically, the actual levels of all atoms

lie between these limits, although many are very close to Russell-Saunders

coupling, and a feWj particularly heavy atoms and those containing almost

closed shelly are close to jj-coupling.

In this chapter we shall obtain the first-order energies and line strengths

in the general in which the two interactions may be ofany relative order

of magnitude by calculating the complete energy matrix for states in the

SiJJl scheme. In this scheme the electrostatic energy is completely

diagonal {the diagonal elements being known from Chapter vn) and the

spin-orbit interaction is diagonal with respect to J andM . The total energy

is independent of Jf, hence the least value of JJ/J which occurs for the con

figuration is usually the most convenient to consider, since every level will

have such a state. In Chapter xn we shall see how to calculate the same

energy matrix in the jj-coupliiig scheme which is particularly suitable for

the considerations of the rare-gas spectra in Chapter xm.
These calculations all neglect tie interactions between configurations,

which will be considered in Chapter xv.

1. Matrix ol spin-orbit interaction for configurations consisting of

coupled groups.*

Our first task is to obtain the complete matrix of the spin-orbit inter

action A~

(1)

for the SLJM scheme ofa configuration. In 38 we sawhowwe could obtain

the diagonal elements of this matrix for configuration I -f II in terms of the

diagonal elements for the inequivalent configurations I and II separately.

Such a calculation is however not restricted to the diagonal elements. If

we make the correlation

i Jr*S J-+J
,

V ;

the dependence on J (and If) of the matrix elements

(3)

* JOHNSOST, Phys. Rev. 38, 1628 (1931).
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is given by 1232 in terms of the quantities

S S (yl&IfyZSZIflLigfa) Li
:7&quot;lS

1L Iy
f^S-L J1 L )

yiyn i
&quot;

(yi&Liy^^nz/n S^.yWjyi y^Sf njyns
f

). (4)

As in 38
1, this may be broken into two sums, over group I and II inde

pendently. Formulas 1I38 may then, with the correlation 38
3, be used to

reduce the first sum to a known multiple of

SS tflfl&t) L&iLi)(&amp;lt;yi&lSfriSi). (5)
yi x

The second sum may be correspondingly reduced. Since the matrix elements

of spin-orbit interaction for configuration I are known multiples of (5), this

effectively expresses the matrix elements for configuration I -f II in terms of

those for I and II separately.*

Two-electron configurations,

These considerations completely solve the problem of finding the matrix

of spin-orbit interaction for a two-electron configuration, since the matrix

for a one-electron configuration is known from 456:

A comparison of this with 1232 shows that

(nK(r) LM)(ns:S:ns) = tnl%\ (6)

which gives the value ofthe quantity (5) for a single electron. Thus for a two-

electron configuration the element

S (nWn*P SLJlftffa) LfSilnWvW S L JM)

=g(8LJ, S L J) S lnif (Ul*\L )(Si&\S ), (1)

where g(8LJ, S L J) is the coefficient of (4) in (3) as given by 1232 with the

correlation (2), and

2L(L+1)

V.IXL-1)} , /(T
iixL-nr***!-

(S\S
1
\S) = (SIS

S
\S) = (8:8^-18-1)= -(SiS

2:S-l) =p (8)

* For a given configuration, say I, to -write that

2 (y
1& V- J1 JyP|rf) LfSt\y* S*1 i 1 J1 if1) (3

1
)

equals the factor given by 12S2 times

E S (/& &\&rd L^/1& L
^y&quot;

1 & Li\Sg/i S *i/J
) (41)

f*i I

nas in general a sense only symbolic, since no state characterized by S* L 1 may be allowed,

although (3
1
) has a value different from zero. The above procedure is justified by the fact, which

follows from I8, that the matrix component (3) is a linear combination of the components (3
1
)

and (3
13

) which depends only on S1 L1 S11 17*- and S 1L 1 SfU JD n and not on the structure of

the inequivalent configurations I and II.
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TABLE lu. Natrk-m of spin-orbit interadim.

x
-i

2p

2 V5
20 o

5

8jD

-at -

-2a -S

-5 -V2

.^2 -4

-VlOa

-V 3a -

-VlOa -V6^

4^ 2V2a

&amp;gt;. m
o o V3

o o V2 o

V3 V2 20020

Pi

o V5 -V10

V5 -2

-Vio o o V2
-2 2V2
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TABLE I11 continued.

2V5/3

Vsjs

2a

2oc 3a -6a

SV^ -6oc

-V7a
| -2V21jS

-2V/
21

J
8

A
-0.

**

-Voa

4V2/S -4V5a -
-

V5

-2a

V,

A

*J.

j1

, *F&amp;gt;
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are the factors given by 10*2 with jS
1^ | 5 52 = f 3 $== I. It follows from 68 15

that these formulas hold for the allowed elements even if the two electrons

are equivalent.

In this way the matrices of spin-orbit interaction for the two-electron

configurations in Table I 11 may be readily calculated. In these matrices the

phases of the eigenstates in the configuration nl
l
l n*P are such that

L= 2
-f

2
5 5= S1

-f S*, J= S-f L, with the vectors added in this order by
the formulas of I -4

s
. We shall always use this system ofphasesfor two-electron

configurations. According to this convention, the phases of a given term

of n^PnH1 are {i)21^2-^-^! times those of the corresponding terms of

More complex configurations may be calculated in a similar fashion.

Thus in Table I 11 is included the configuration p*s. This matrix was obtained

in the way we have sketched from that given for
j&amp;gt;

3
3 which is calculated in

the next section. In this matrix the phases ofthe eigenstates are such that an

eigenstate ofp3s is obtained from those ofpz with phases given by 486j by
adding S^-f SS

=S&amp;gt; l^+Ls=l, S-rL=Jin this order. We shall always
use such a system of phases when adding an electron to an ion or in general
in coupling two groups.

2. Matrix of spin-orbit interaction obtainedfrom the eigenfunctions,

For configurations containing more than two equivalent electrons we
cannot obtain completely the matrix ofspin-orbit interaction by the method
of the preceding section. But if we know the eigenstates for the SLJM
scheme (Chapter vm) and the matrix of spin-orbit interaction in the zero-

order scheme, this matrix may readily be transformed to the SLJM scheme
in the usual way. The matrix of the spin-orbit interaction in the zero-order

scheme is obtained from 66
(cf. 4

s 1 for notation and sign convention). One
obtains a non-diagonal element only between states differing in regard to one
individual set, say that a occurs inA while a! occurs in A . The value of this

component is

(.4 H*\A )= H-*t&amp;gt;w(*\L-S\a ). (la)

The diagonal element has the value

where a runs over aE the sets (outside of closed shells) of A.
From these formulas we may easily calculate the matrix ofHl in the zero-

order scheme, where it is diagonal with respect to if. When transformed to

the SLJM scheme it becomes diagonal also with respect to J and inde

pendent of If.
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Illustration: The configuration p*. The SLJM states for j?
3 were obtained

in 486m for M =
J. In the zero-order scheme 486a the matrix ofH1 has the

value
A B CDS

A

B

C

D

E

When this is transformed to the SLJM scheme by 486m, we obtain the

matrix given in Table ln .

3. Illustrations of the transition from LS to jj coupling.

if*

By adding the electrostatic energies of 5 7 to the spin-orbit matrices of

Table 1U
5
and solving the resulting secular equations, we find for the energy

levels of si in any coupling the values:

Here =
&amp;gt;. The complete transition from LS coupling (fl

f

1 &amp;gt;2)
to jp

coupling ( &amp;gt; ffj is plotted in Fig, I11 for the configuration sp. FQ is an

additive constant which does not influence the intervals between the levels

and hence does not need here to be considered further. Apart from .F
,
we

see that the ratio e/6^ ofthe energy value to G^ is a function only ofx= f/Gl .

For =
3
the energies in these units are + 1 and 1, while for Q^O, they

are fx and fx- As x~&amp;gt;oQ, */#! approaches infinity. Hence we cannot show

the whole transition by making a plot of JGl against x- In order to keep

the ordinates from going to infinity we plot instead -===. as ordinate, and

in order to confine the abscissas to a finite range, we plot this against

^j(1 4. x) in Fig. I11 . In this way we show the true interval ratios for all x

from to oo. At the left end, e/G^ is effectively plotted against }/&amp;lt;?! 3
while

* HOUSTON, Phys. Eev. 33, 297 (1929);

CONDON and SHOBTLEY, Phys. Eev. 35, 1342 (1950).



272 INTERMEDIATE COUPLING 311

at the right end /f is effectively plotted against 1 -
(&amp;lt;?!/)

T^ factor | is

chosen to make the total splitting the same at the two ends.

-5 -6 -7 -8 -3 I -S -S 7 -S -5 -4 -3 -2

Fig. I11
. The configuration sp in intermediate coupling.

./ -2 -3 -4 -5 -6 -7 $ -3 I 3 -3 -7 -6 -5 -# -3 -2 /

-I -2 -3 -4 -5 -6 -7 &

Fig. 211. Interval ratios for sp. (x= K/#i *)

In order to see how well the observed si configurations fit these

formulas, we have drawn in Figs. 211 and 311 for sp and sd respectively

curves which show the theoretical value of (
3
L|
- 3

L|_1)/(
3i

l4.1
3
LJ) plotted

as ordinate against (^i-^-i)/^- 3
^-!) as abscissa. These curves
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are in fact straight lines: if we represent the ordinate by o and the

I I
abscissa by a,

0= .

The plotted points represent these ratios for the observed si configurations.

It is seen that in genera! they follow the theoretical formulas rather well.

While there is no essential requirement that G
l
be positive, and there are

many sd configurations in which the singlet is below the triplet as if G
2
were

&quot;Q ./ -2 -3 -4 -5 -6 -7 -8

Fig. 3U. Interval ratios for ad. (x= K/&amp;lt;?, .)

negative, the interval ratios for these cases do not obey the above formulas

at all accurately; they are probably all to be explained as in I 15 by a strong

perturbation of the singlet by another configuration. No plot is made for sf

configurations, since there are just a few known, all close to the Russeli-

Saunders limit.*

* Formulas which make an approximate allowance for the terms in the Hamiltoiiian

which express the interaction of the spin of one electron with the orbit of the other have
&quot;been calculated for * I by use of group-theoretical methods by WOLFE [Phys. Rev, 41, 443

(1032)]. We may derive Wolfe s formulas very simply in the following way. For a two-electron

configuration this interaction is assumed to have the form. (of. 77
I)

(1)

The second factor here has no elements connecting different configurations. By writing

L-S-ELt Si, (2)

we see that its matrix is that of L*S [=J (J&quot;

2 - JL2 - S2
}] minus that of the spin-orbit interaction

with ^(r ) and hence & set equal to unity: both of these are known in LS coupling. This

matrix must be multiplied by that of w(rl9 rx) for the configuration under consideration. If in

*K**i* *&quot;t)
we replace the mutual distance rlt by r

&amp;gt;t

we have a function p(rlf rt) merely of the

magnitudes of the radii. The matrix of this for a configuration in which the I values of the two

cs 18
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i?*

V, -J-.-W.-tf
1^ \

7_,

7. =A - ^.F* - It 4-V aai ps_ jus zrj- j. s&amp;gt;
rs

SP 1

&quot;!

^0 J-^z fS 4.
-C 2 *

&amp;gt;j
*2b * 4b *

XGJ

If /JF2 is expanded as a power series in /jP2 s keeping Just the first power,
these results agree with those obtained in Chapter vn for LS coupling. If

c
j

Is expanded in terms of -?V, the results agree with those of Chapter x
forjj coupling. See Fig. I 10 . The complete transition is plotted in Fig. 411 as

a function of x =K ^V &quot;^e superpose on this figure the observed levels of

Ge 1 4p
2
3 Sn 1 5j?

2
,
and Pb 1 6p

2
, placed at such values ofx that 3PX , the mean

of IK and SP!,, and the mean of ^and 8Pfit the theory exactly. This

corresponds to the parameter values

Ge I Sn I Pb I

F2 1016-9 918-0 921-5

i 880-1 2097-3 7294

X 0-173 0457 1-583

elections are different is diagonal in the zero-order scheme, the diagonal elements having the
constant value

&quot;

Hence in any scheme this matrix is ^ times the unit matrix, and the whole matrix of JEf-
v

is

just TI
times the matrix of (2). To this approximation, the Lande interval rule still holds in the

Hcssell-Saunders ease.

For si, the matrix of Hs is
TJ

times the matrix of L S (which is diagonal with elements

0,J,
-

1, -I - 1, for lL
t ,

3
|Tl

s
lj

3^
z_i) minus the matrix of spin-orbit interaction of Table I11

with
TJ

written for
z

. When we include this matrix, we obtain the energies

We cannot compare these formulas satisfactorily with experiment because we have now as many
parameters as energy levels.

These considerations can readily be extended to other configurations.
* The secular equations for this configuration were first calculated by GorBSMJT, Phvs. Rev.

35, 1325 (1930), and those for p3 later by INGLIS, Phys. Rev. 38, 862 (1931), by the following pro
cedure: Since all the matrix elements of the Hamiitonian are linear functions of the JP s, G\
and fs, the secular equation for a J value occurring n times will be homogeneous of ?i

til
degree in

the J^s, GTs, t?s, and , the energy variable. For small J*s, the roots of these equations are linear

functions of the F*s, G^s, and fs, known from the electrostatic energies and Lande splittings of

Chapter vn. IFor smaE electrostatic interaction the roots are linear functions of these same para
meters known from the considerations of Chapter x. Knowing these roots for limiting values of
the parameters serves in simple cases to determine all the coefficients in the secular equations.
Since this procedure does not give the energy matrix, it is not possible in this way to determine
the eigenstates in intermediate coupling in terms of those for pure coupling for use in Zeeman effect

or intensity calculations. In simple cases, the weak-field Zeeman effect is given by addition of
terms in Jf* to the secular equations.
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It is seen that the coupling gets progressivelj closer to jj as the atom gets
heavier. The separation between the two levels of J= 2 and the separation
between the two levels of J&quot;

= 0, which are absolutely predicted by the theory,
are seen to agree weE with the observed data.

X. * I/K

Fig. 411 . The configuration ^p
2 in intermediate coupling. (^= J/JFa .)

One eigenlevel of j?
3

is
2Pi

,
with energy 3jF , one is

2D
5
with energy

%FQ 6jF23 the other three levels are linear combinations of 4
$| ,

2P
f ,

2D
t

with energies given by the roots of the secular equation

3
4- 2LF2

2
-f (90J|

-
|C

2
)
-^jP2 C

2= 0.

These energies are plotted in Fig. 511 as a function of x= /jF2 , together

with the observed levels for As I 4p
3

, Sb I 5p
3

,
and Bi I

6j&amp;gt;

3
5 which are seen

to depart- progressively from Russell-Saunders coupling. The values of x
for these configurations were determined by making all the levels fit as

well as possible. The parameter values are

The configuration jp
4 is similarly discussed in Chapter sm.

1 8-2
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For more complex configurations the formulas become more complicated

and the number of parameters necessary to determine the intervals greater

than two, so that it is no longer possible to plot the complete transition in

two dimensions. Xo comparisons with experiment have been made for such

configurations. The secular equations are readily obtained from the electro

static energies of Chapter vn and the spin-orbit matrices of Table I 11 .*

2 -3 -4 -5 -6 -7 -8 $ I -3 -8 -7 -6 *S -4 -3 2

x * i/x

Fig. 511 . The configuration p in intermediate coupling* (%= JJ/^a )

At this point we can merely call attention to a recent paper by Bacher
and Goudsmit 5f which makes a good start on the problem of calculating
the absolute energy of a state of an atom from the experimentally known

energy states of its ions. It is unfortunately too late for us to treat this

important paper in detail.

* VAX VLECK [Phys. Rev. 45, 412 (1934)] lias shown that in the addition of an * electron to
an ion, the electrostatic energies for tie atom may be easily calculated from those of the ion by
the Dime vector mode], and that in tJiis case the spin of the parent term is always an exact
quantum number. By the procedure of lu, the spin-orbit interaction for such an atom is easily
obtained in terms of that of the parent ion. MEBBELL [Phys. Rev. 46, 487 (1934)], combining
these calculations, has made an interesting comparison with experiment of the energy levels
based on certain definite terms of the dk ion in a number of configurations of the type d*n*

*

f BACKER and GOTIDSMIT, Phys, Rev. 48, 948 (1934).
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4. Line strengths in intermediate coupling.

The strength ofa line from a level aJ to a level bJ is given in any coupling

by formula 745 in terms of the quantity (aJ\P\bJ }. If the expansion of the

state aJ is known in terms of a set of states T(aJ) and the expansion of bJ
is known in terms of the set Y( J ), we need only to know the values of

(aJ:P:/8J ) to obtain the strength of the line in question. Since the factors

(
:P:

) transform like the components of a matrix ofan observable (
93 1 2) 5

-/
/

). (1)

The matrix components on the right ofthis equation must be taken between

states having the same phases as those for which the transformation co

efficients are calculated. Hence we cannot immediately replace these matrix

components by the square root of the line strengths as given by Chapter IX.

However it is convenient to replace these components by quantities which

we shall write as S*(ocJ, /?*/ ), and which are understood to be the square root

of the line strength taken -f or according to the sign of the matrix component

lpJ ). Hence we write

, bJ )
= S (aJ\*J) S*(ocJ, @J

f

)(fiJ
f

\bJ
f

). (2)
a/?

In this way we can use directly the results obtained in Chapter ix for the

magnitude of the S s ? and need only learn to choose the proper phases.

Phases in the matrix S*.

Let us consider, as in 39, the transitions from configuration I -f II to

configuration I -f IV and ask the phase of

(yW! y
IVIVIVSLJ:P:^S^U &amp;gt;y^$L

S L J ).

This element is expressed by 11 38 with S+L=J in terms of

which is in turn expressed by 1 138 with JLx -f
IV or Ll

-f JL
n= L in terms of

(yivj^iV|p|ynjrjij B jj^ eac|1 case jfaQ proper sign of the coefficient is given by
1 138. In the same way, we find the relative strengths of the lines in a multi-

plet from 292 ? and then the relative strengths of the multiplets in a group

having the same parent terms by a reapplication of 292 with SLJ, SL J*

replaced by U-U^L, I^L^L . This expresses the strengths of all lines in the

group in terms of S(y
Iv^vLIV

J y^S^-U1 }. We get the proper phases for the

S^ s if on each application of 292 we carry the factor (1) where ( I)
2 is

written in these formulas and also in the second formula of 292b, when

J(J+l) S(S+l)i-L(L i- 1) is negative. This amounts to carrying in

Table I 9 a minus sign for second order satellites when L-+L 1, and! for all

satellites and those principal lines for which S(S Jr l)&amp;gt;J(J+l) + L(L4-l)
when
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In this waywe find the phase of S^ for a given line in terms ofthe phase of

S&(y
rvSI*IF

9 y^S^L^) correctly for eigenstates with the phases we agreed

to use in I 11 in calculating the energy matrix.

For transitions in which the relative multiplet intensities cannot be

obtained by the method sketched above, we must calculate the matrix

(ySLlPvy SL ) directly from the eigenfimctions used for the expression of

the energy matrix. We assume that the states of a term have the proper

relative phases as given by the calculation of 58
. Then (ySL\P\y SL ) may

be obtained by finding the matrix element (ySLMs3IL\P\y SL J}Is3IL) or

(ySLJ3r\P\y SL J JI
f

) for any one component of the multiplet, since the

values for all components may by the formulas of Chapter ra be readily

expressed in terms of (ySL\Ply
fSLf

). This matrix element is obtained

from the zero-order eigenfimctions by the formulas of 66 and the one-

electron components (cf. 49 1 and 396)

(n I m8 rn^erln I- 1 m8 wj)
= s

-l)(iij)}. (3)

The procedure for finding intensities in intermediate coupling is thus the

following: Put the calculated eigenvalues of the energies into the energy
matrix to find the transformations from the i$-coupling states in the usual

way. Find the matrix of Si for states with the same phases as those used in

obtaining the energy matrix. Multiply the two transformation matrices and
the S^ matrix according to (2).

There are at present practically no data suitable for comparison with the

theory, so we shall not carry through a detailed calculation.

Sum rules.

Concerning the line strengths in a transition array, we can make certain

general predictions in the form of sum rules which are independent of the

coupling of the configurations.

The most general of these is the J-group sum rule** We call the array
of lines connecting all levels of a given J in one configuration with all

levels of a given Jf
in another configuration a J group. If neither of the

configurations is perturbed by outside configurations, it follows immediately
from 4U2 and the principle of spectroscopic stability (2

2
25) that in any

transition array the sum of the strengths of the lines in a J group is independent

of coupling. If several configurations are perturbing, we must enlarge the

/ group to include all perturbing initial levels and all perturbing final

levels before the above statement becomes true,

* HARBISON and Joiosoy, Phys. Rev. 38, 757 (1931).
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The next sum rule of importance is the J-file sum rule* which is an

extension of that proved in 39 for LS coupling. In a transition array,

the set of lines connecting a single given level of one configuration with

all levels of the other configuration we shall call the J file referring to

that level. We saw in 39 that for a transition array like d^p^zdfid, the

strengths of the different files referring to the levels of d*p were propor
tional to 2J+ 1, and the strengths of the different files referring to d*d

were proportional to 2J-f 1, in LS coupling. We shall here show that this

is true for any intermediate coupling. In this case the jumping electron

is not equivalent to any of the electrons in the ion in either configuration,

and the J-file sum rule holds for both rows and columns. For such an

array as d4p*=?d
5

t in which the jumping electron is equivalent to other

electrons in one of the configurations, the strengths of the different files

referring to d5
are., in any coupling, proportional to 2*7+1, but this is not

true of the files referring to c?
4
p.

In general, we shall prove that for any coupling, the strengths of the Jfile$

&amp;gt;.

referring to the level of the \ i configuration are proportional to 2
i jincLl )

provided that the jumping electron is not equivalent to any other in the . .

configuration. In this statement, the jumping electron may be equivalent

to others in the \ , ! configuration. In case it is not equivalent to
{
final

j

& ^

another in either configuration, the sum rule holds for the files referring

to both configurations.

That this sum rule holds in any coupling for the files referring to ps and

to pp in ps^=?pp and for the files referring to
j&amp;gt;

2 in ps^p* follows from

an examination of Table 29 or Table 310 . In these tables, we see that the

sums of the S*s in all columns headed by the same J value are the same,

while the sum of the products of the S^s in any two columns headed by
the same J value is zero. Therefore, since the S^ s transform like the matrix

elements ofan observable, it follows from 2226 that these sums are invariant

under any transformations of initial and final states which do not mix up
the J values. A similar statement applies to the rows of p s *^pp in these

tables, but not to the rows ofps^p2
.

In order to prove in general the sum rule as we have stated it, we shall

apply considerations similar to these to the whole electric-moment matrix

for the transition array in the zero-ordernlm^ scheme. Let us consider

the transition array connecting the configurations A and /z. We suppose

that in the nl and nT shells (where Z Z= 1 or 0), A contains nlk and

* SHOBTLEY, Phys. Rev. 47, 295, 419 (1935).
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ft contains iJ^n V. In addition A and ft
have the same numbers of

electrons in ail other shells. For a non-vanishing matrix element of P in

the zero-order scheme, the quantum numbers in these other shells cannot

differ in A and p. When they do not differ the element has the same value

as in the amy nlk^nlk~l n fV t
which we now consider.

First we calculate the sum of the squares of the elements ofP connecting

the state O(wijw& wzf m?,...,m*?w?) of nlk to all states of nlk
~l n l

f

. The

k sets of quantum numbers in &amp;gt; must be all different if the state is to be

allowed. This state will combine with the states

0)Y(tn|TOf, ..., , 0*X), W(mlm}, rojmf ,
... , mjwif, mX), ...

,

CWT(i}mJ, ... , rojrW 1
* mX) (4)

of w-Z^nT. For combinations between &amp;gt; and WT we must have m8
= m*

ml -ml or m| 1. From 668 we see that the square of the matrix

element of P connecting cpand &amp;lt;*&amp;gt;Y is just |(nZwi*wif|P|wTma7nJ)|
2

,
cal

culated for the one electron which changes its quantum numbers. The

total strength of transitions from * to (i)Y for all mX is given by
| 031 oo

The total strength of all transitions from O to all the T J

s is just k times

tMs9 and is independent of the quantum numbers in &amp;lt;t.

We shall now show that for two states &amp;gt;

a and &amp;lt;1&amp;gt;

& of nlk
,
the sum of

the scalar products of the elements of P in the transition array is zero,

i.e., that the two files of the matrix of P referring to a and &amp;lt;t&amp;gt;

6 are

orthogonal. The states &amp;gt;

ff and 5 do not combine with the same states

of nlk^nT unless they agree in k 1 of their sets of quantum numbers

say that *a has mfm\
a where t& has-mfmf . If &amp;lt;!&amp;gt;

a and &amp;lt;D

6 do not agree

in k 1 sets, the files referring to them are obviously orthogonal. If they

do agree in all but the f^ set, they combine simultaneously only with the

states (i)T of (4). The sum of the scalar products of the elements con

necting them with the states of (i)T is

E (nZmfmpjPlnTmX) (nTmXJPNmf **?),

and this, by 133 1 3 is seen to vanish unless mf mi
a

, mfmf-, i.e., unless

&amp;lt;!&amp;gt;

= tj2& r

Hence in the nlmsml scheme, the sum of the absolute squares of the

matrix elements of P having a common state of nlk is independent of

that state, and the files of matrix elements from two states of nlk have

vanishing scalar product. A simple extension of 2226 shows these properties

to be invariant under unitary transformations. Hence if we return to the

complete configurations A and \L in a scheme characterized by / and M
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values, we may say that the lines haying the initial state XJM have the

strength sum &{(nZ:P:^T)J
2
H(l? r) and hence that the J file referring to

the level AJ has the strength

k(W+l)\(n&PWl )\*E(l,l ). (6)

This proves the /-file sum rule as stated, and gives the absolute values,

in terms ofthe one-electron component (nl\P\n
f

r) 9 ofthe strengths ofthe files.

With regard to cases of configuration interaction, we may say that if

a pure configuration A combines with two perturbing configurations \L
and

v, then if the sum rule holds with respect to the J files referring to the

levels of A in the transitions to /z and v separately, it holds with respect

to these files in the perturbed case.

In. the still more special case of transitions a s *=?& p in which the valence

electron Jumps from s to p or p to s and is not equivalent to any electron

in the ion in either configuration, we can obtain yet another rule which

may be called the J-group-file sum rule. This rule says that for these arrays

the individual J groups may be broken up in one direction into invariant

files. The direction is such that all the Ines in the file have a level of xs

in common. These /-group files in Tables 29 and 310 are set off by solid

and broken limes, and their strengths are shown in parentheses. The

strength of each allowed J-group file is the same as that of the J files

referring to the levels of a 3? which cross it in the array. These statements

are proved (using 2226), in jj coupling, by noting that two files of the

same J group are orthogonal since they refer to different quantum numbers

of the ion (the valence electron must have quantum numbers ns^), and

by showing directly from 1I38 that

J
)
= (2J + 1) \(p\P\8)\*E(p, *), (7)

for / =/+ 1, J, and J- 1.

The best experimental data with which to compare these sum rules are

the anomalous-dispersion determinations by Ladenburg and Levy* of the

strengths in the neon array 2y
5
3-p -&amp;gt; 2p

5 3s. (We shall see in S13 that the

strengths in this array should be the same as those in pp-&amp;gt;p&.) Such a

comparison has been made by Shortley (foe. cit.) with agreement within

the experimental error. In the same paper is reported an attempt to

calculate the detailed strength pattern for this array by the method we

have outlined, using the parameters of Table I13 for 2p
B

3j&amp;gt;.
This calculation

was not satisfactory because a small change in the parameters has a very

large effect on the calculated strengths, and the parameters used were

necessarily inaccurate.

* LADE*-BUBG and LEVY, Zeits. fur Phys. 88, 461 (1934).
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5. The forbidden Maes of astrophysical interest,

For a long time several prominent lines in the spectra of some nebulae

remained unclassified. They were often called
e nebulium

j

lines because it

was thought that they might be due to a new element not yet known on the

earth a repetition of the history of helium s discovery on the sun before

it was found terrestrially, Bowen* finally showed that they are due to

transitions in oxygen and nitrogen in various stages ofionization. The atoms

involved have p* s p* and p^ for their normal configuration and the lines arise

from transitions between different levels belonging to the normal con

figuration. They cannot, therefore, be electric-dipole radiation. We shall see

that they are partly quadrapole and partly magnetic dipole in character.

The most systematic study of astrophysical data for identifications of

such lines following Bowen is that of Boyce, Menzel and Payne.f Calcula

tions of the transition probabilities have been made
/

by Stevenson and by Condon.* An earlier calcula- ^o &o

tion by Bartlett is based on approximations not

sufficiently exact to be of interest. We shall Emit

ourselves to the p2
configuration. A

^

The most famous of the nebulium lines, calledNl

and J\
T
2 5 were identified by Bowen as the transitions

indicated in Fig. 611 in III. These intersystem g t

transitions are made possible by the slight de~ 3^ 3p
partures from Eussell-Saunders coupling. As we

;

3

have seen in the preceding sections, the eigenfunc-
,. - ,, ,

| n ii j 10 - v tffe- 6U- Bowen s iden-
tion of the level usually called ^ is a hnear com- tification of the

bination of those for 15 and 3P . The actual levels Hllm&amp;gt; ^^Ni and ^-
will be designated by the letters on the left in the

figure, the approximate Russell-Saunders labels being given at the right.
The breakdown of coupling is expressed by the transformations:

00 .

The matrix components ofthe spin-orbit interaction are given in Table I11.

We evaluate the parameter f from the intervals in the 3P term, obtaining
C = 210cm-1 for III. To the first order of the perturbation theory b and d
are given by

These values
s though small, are what make the nebular lines possible.

* BOWEN, Astrophys. J. 67, 1 (1928).

f BOYCE, MJENZEL and PAYSTS, Proc. Nat. Acad. Sci. 19, 581 (1933).
t STEVENSON, Proc. Roy. Soc. A137, 298 (1932);
CONDON, Astrophys. J. 79, 217 (1934).

BABTLETT, Phys. Rev. 34, 1247 (1929).
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By means of tie results of Chapter vni the Rnssell-Saunders eigen-
functions are expressible in terms of those of the zero-order scheme. From
the latter the matrix components of quadrupole moment and magnetic-
dipole moment may be computed. In this

&quot;way
the following results were

obtained for the line strengths:

Line Magnetic dipole Quadmpole

|*3C
Here s2 is the integral s2

= - e r2 E*(2p)dr.
Jo

The value of this in atomic units, using the eigenfunction of Hartree and

Black,* is 1-24 : so using the formulas of Chapter iv connecting line strength
with transition probability we find for the absolute value of the transition

probability for the two lines

B2 )
= 0-018 sec-1

AT2 : A(^4 a , spj) = 0-006 sec-1 .

The lines are almost entirely due to magnetic-dipole radiation, the quad
rupole term in the transition probability giving only 0-1 per cent, of the

whole amount.

The line (7 -&amp;gt;-4 2 is called an auroral line since in OI this transition gives
rise to the green line of the aurora and the night sky. Being a line for

which AJ= 2 it is entirely of quadrupole character, but not being an inter-

system combination (A&= 0) it does not depend on the partial breakdown
of coupling. The calculated transition probability is

The triplet C -&amp;gt;

3P is interesting. The line CQ-*DQ is forbidden in all

approximations by the general exclusion of 0-^0 transitions in J. Likewise

&amp;lt;7 -&amp;gt;

3P1 cannot be a quadrupole line as 0-1 change in J is of vanishing

strength for this type of radiation. On the other hand GQ-+B2 cannot occur

with magnetic-dipole radiation because of the dipole selection rule on J.

We therefore have two lines close together, one of which is due to purely

quadrupole and the other to purely magnetic-dipole radiation. The calcula

tions give
A(O ,

J?2) = 1-5 X lO-^see-1 , (Quadrupole)

A(C ,

3P1 )
= 0-102 sec&quot;

1
, (Magnetic dipole)

indicating that the quadrupole line is only about 10~3 as strong as the

magnetic-dipole line.

* HABTEEE and BLACK, Proe. Roy. Soc. A139, 311 (1933).



CHAPTER XII

TRANSFORMATIONS IN THE THEORY
OF COMPLEX SPECTRA*

We wish In this chapter to consider, more in detail than heretofore, the

transformations between the various schemes of states of interest in the

theory of atomic spectra. There are five representations of importance 3 the

two zero-order schemes, which we shall designate as the m
i
m

l
scheme and

the jm scheme, tie two LS-Goiipling schemes characterized by 8LM8ML

and SLJM respectively, and the ^&quot;-coupling
scheme of I 10

, characterized

by the electronic j values and resultant JM. We shall consider in particular

the four transformations

nljm *-?

\\

33JM *=? SLJM
and incidentally the transformation nlmsmi 2=^ SLMSML . In preparation

for Chapter xnr on configurations containing almost closed shells we shall

establish a correlation in each scheme between states ofa given configuration

containing an almost closed shell and those of a corresponding simpler

configuration, and determine the relation between the corresponding*

transformation matrices^

1. Configurations containing almost closed shells.

Let us consider a configuration which contains, outside of closed shells, a

shell
*

&*
5

which is complete except for e
c

missing
5

electrons, and in addition

TJ
other electrons. Here e and -q are considered to be small integers, although

formally there is no restriction placed on their magnitude. This configura

tion we shall designate as
4

configuration ^, since such configurations occur

mainly for elements near the right of the periodic table. To this configura

tion we shall correlate a simpler configuration J$? which contains the

same closed shells, e electrons present in shell &*, and the same
77

other

electrons.

In the nZwywjscheme we shall correlate to a given state of& with quantum
numbers listed in the standard order of 56

,
that state of 3% whose e missing

electrons have the negatives ofthe ms and ml
values ofthe e electrons in shell

f of S?
S
and whose

i\
other electrons have the same quantum numbers as

*
SiiOETLEY, Pnys. Bev, 40, 185 (1932), 5; ibid. 43, 451 (1933).

t The considerations of this chapter can all be readily extended to configurations containing
more than one almost closed shell. This case is, however, of little interest.
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those of oSf taken when the quantum numbers are listed in standard order

with the phase ( l)
w

,
where w is the sum of the m

l
values of the electrons in

shell& . It is clear that this gives a one-to-one correlation between all states

of the two configurations, the correlated states having the same Ms and

ML values. With this correlation we shaU show in 212 that the matrices of

S2
,
L2

y
and L*S are the same for the two configurations, and hence that the

same matrix will transform them to LS coupling. The allowed states in LS

coupling thus have the same 8LM8ML or SLJM values for the two configura

tions, and corresponding states in LS coupling will &quot;be the same linear com

binations of the correlated msml
states.

In the nljm scheme we shall correlate to a given state of JS? with quantum
numbers listed in the standard order of 56 , that state of 3t whose missing

electrons have the same j values but the negatives of the m values of the

e electrons in shell &amp;lt;$? of 3?, and whose
rj

other electrons have the same

quantum numbers as those of J? taken when in standard order with the

phase ( i)&amp;lt;e-KO&amp;lt;+*).
Here I is the azimuthal quantum number for the shelly7

,

which in ^ contains p electrons with j=l+ % 9 and q electrons with

j = |- i.

(p + q=* ). These correlated states have the same M values. With

this correlation we shall show in 312 that the matrix of/
2 is the same for the

two configurations. Hence the allowed states in jj coupling have the same

JM values, but the electronic j values of 3? are those missing in the corre

lated states of^. Corresponding states in jj coupling will be the same linear

combinations of the correlatedjm states.

We shall show in 512 that with these correlations between zero-order

states ofJS? and0k , the transformation from themsm scheme to theJm scheme

is the same for the two configurations. Hence the transformation from LS

coupling to jj coupling is the same for the correlated states of J? and St.

This transformation will be given explicitly for a number of two-electron

configurations in 612 .

2. The transformation to LS coupling.

In order to show that the same matrix will transform the correlated

rilmfMi states of J? and 9k to L8 coupling, it is only necessary to show that

the matrices of L2
, S2

, and L-S are the same for the two configurations.

Formulas for the elements of these matrices were given in 48 , Let us denote

by A# 9 A
f

^ 3 ... zero-order states of JSf and by A M , A m ,
... the correlated

states of ^.

Matrix of IA The general non-diagonal element of 2 is given by

483a. If neither a nor b is in shell &*5 the value is obviously the same for

3? and 91. If a, but not 6, is in shell SP* the second term vanishes. In order

to obtain a value for the first term a and a! must be of the form (w,|) &amp;gt;



286 TRANSFORMATIONS IN THE THEOBY OF COMPLEX SPEGTEA 212

(M|_ i).* Equation 482 shows that in this case the elements for * and 01

are essentiallyequal we must considerthephases in greater detail. Ifthein-

dividua! set lying between (wi,)
=*= and (wiz

- 1
)

is present in JSP , so far as shell

& is Concerned As and^ difier by an odd permutation, whileA m andAm

do not differ in order. The converse is true if this element is missing. This

introduces one difference ofsign between (A&\L
Z
\A&) and (A a\L

2
\A a). How

ever, the sum of the m
l
values in shell Sf differs by one in A m andA

r

m . This

results in a second difference in sign from the different choices of phase for

^(Agt) and ^(A m), which makes these two elements just equal. In a similar

wav one demonstrates the equality in case a and 6 are both in shell ?.

The diagonal element of 2 is given by 483b. The first term is the same for

A m and A# , as also are the parts of the second and third terms arising from

shells other than SP. The parts of those terms which arise from shell SP are

the same if calculated for As as for the group $ missing electrons of A M .

The equivalence ofthe calculation for the missing electrons to the calculation

for the electrons present In _4 m is a direct consequence of the following

interesting relation: If one takes the integers (or half-odd integers) -Z, ...,

I and arranges them into two groups a and
/?,

then the following sum has the

same value for groups a and )8 (the individual integers are denoted by mL):

S[Z(Z+l)-mf] + S[-^Z+l)HX-z]&amp;gt; (1)

mi

where the second sum is taken over only those m/s for which m
l

I is also

in the group.f
TMs completes the proof that the matrix ofL2 is the same for ? and 91.

The calculation for S2 is very similar and will not be discussed in detail.

Jlatrix of L*S. If A differs from A in two electrons, the calculation is

much the same as for L2 and S2
. IfA andA differ in one electron, the matrix

element is given by 485b. If a and a! are in shell
SP&amp;gt;

and for j? have the

* For example shell & of As and A %. might have the following electrons :

Ay ... - X X

Here x indicates tie presence,
- the absence, of a given individual set; all sets except those

noted explicitly are the same for Ay and A#. In this case A& and A& will nave the forms:

... (- TOl + l)- (-mjf (-,)- ...

A& ... x x -

A a ... x x

f This may be proved as follows: The division into groups a and ft may he made by splitting the

series I, ... I into r sections, putting the first section into group a9 the second into
/?,

the third

into a, etc. Consider the sections as defined by section points p^, pz , ..., j&amp;gt;r+1 , such that the &amp;lt;**

section contains the numbers pt -f- -| Pt -f-f , ..., Pt+i i- The value ofthe sum (1) whenmz
runs over

the numbers ofthissectionis /(pt) -rf(pt^.j),
where /(p}=|(Z-f ^)

2 -
Jj5

2
. Thenthesum for group a has

the value /(ft) -*-/( ft) +/(ps) +/&amp;lt;P4) + * wMe tlie siam for
ft
has tlie value/(^2) +/(p8 ) -f/(p4) + .

One of these expressions ends with the term f(pr) 9 the other with/(pr+1). But/(ft) =/( - i - J) =0
and/fp^j) ~/(l -r }) =0. Hence the sums for a and

f3
are equal. This proof was suggested to us by

Professor Bennett of Brown University.
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form (wij)-, (mz
-

1)+, for 31 they will have the form
(
-m

l+ I)-, (
-m^. One

may easily verify that A# and^ ,
Am and^ then differ by the same per

mutation; however, one difference in sign of the matrix elements is intro

duced by the differentm
l
values for A M and A m . For J$? the second, third

terms vanish unless b = (ml -l)-,c = (wij)+ respectively are present. For^ the

second, third terms vanish unless b =
( m

l)~, c = (-fln; +l)+ are present.
&quot;Now if neither b nor c is in $?, they must both be in 3$. Hence in this case

(A#\L-S\A#)=(a\L-S\a )

(A *\L-S\Aa) = -
{(a\L*S a )

-
2(a|-S|a )}

= (Ajf\L*S A
f

^}

(cf. 482 and the discussion under 48
5b). Similar considerations hold for the

other two possibilities.

The diagonal element (2
8
oc) of I&amp;gt;Sis obviously the same for J5? and 9t with

our correlation. This completes the proof of the equality of the -Decoupling
transformations for J? and 5?.

3. The transformation to jj coupling.

The transformation from the nljm scheme to the jjJM scheme may be

obtained by any of the methods sketched for LS coupling in Chapter vxn;

the diagonalization method is however much simpler than for LS coupling,
since only one matrix, that of J 2

,
need be diagonalized, and the trans

formation is diagonal with respect to thej values of aE electrons in addition

to If. The elements ofthe matrix ofjF
2 in thejm scheme may be written down

in exact analogy to those of 2 in the msml
scheme (cf. 4S3). It has non-

diagonal elements only between states which differ in regard to two in

dividual sets of quantum numbers; say that A contains a and 6 where A
contains a! and b

1

. This element has the value

where (a\Jx \b)
= S(n

a
l
a,n

b
l
)

)(j
ama

\Jx\j
bmb

) is given by 334. The diagonal
element ofJ2 is

(A \J*\A] =&M*+W S {/(.f+ 1)
- (m)2

}
- 4 S (a| Jx\b)*.

a a&amp;lt;b

Now with the correlation given in I12 it is easily seen, by an argument
which is the direct analogue of that given above for JL2 in the w6?% scheme

(noting thatJ2 is diagonal with respect to the number of electrons in shell ff*

with j= l
-| s

i.e. 5 to the q occurring in the correlation factor), that the

matrix of J^ is the same for the two configurations and hence that the

transformation to jj coupling is the same.

4, The transformation between zero-order states.

We shall in this section consider in general the transformation connecting

two systems of zero-order states, and the relation between these trans

formations for J? and ? with certain general correlations. In the next

section we shall specialize to the particular transformation of interest to us.
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Let us consider an A
T
-eleetr0n configuration for which there are n possible

sets of one-electron quantum numbers.^ In the first zero-order scheme let

us denote these individual sets, in some standard order, by the numbers

1, 2, ...,n, and the corresponding states by ^(I),^(2) 5 ... 3 iff(n). In the second

scheme let us use the notation
x l, ,2, ..., t

n for the quantum numbers, and

^(/l)* ^(/^)j --9 ^00 f r t&6 states. The transformation between these two

one-electron systems is given by

The zero-order antisymmetric function belonging to the complete set a1
,

a2? ...
?
a*v of quantum numbers is defined by

&amp;lt;*... *) = j/&(ai)fc(a) ... MO?) (2)

(cf. 36
). Here a1

,
a2

, ., ay axe JVmimbeisoftheset 1, 2, ..., w, arranged in

the order a1 &amp;lt;a

2
&amp;lt;... &amp;lt;ot-

Y
.

The transformation of this state to the primed scheme is given by the

following calculation. From (2) and (1)

Wa... *).* S ^(^) CjPlai) ... S #(^)(^|^)
= S

If two of the jB s are equal the antisymmetiic factor $/... vanishes, while

for a given set of /fs this factor is the same, irrespective of the order of the

/?X to within a sign which is just correct to give us a determinant of the

transformation coefficients; i.e.

T(ai*&amp;gt;...a*-)= S Q{^-- ^(^^...^), (3)

]&&amp;lt;/?*&amp;lt;
...&amp;lt;

ff \ * * /

where we use the notation

The transformation coefficient connectmg the state
/^

1
/jS

2
...^

J? with the

state a1 a3
... ay (quantum numbers in standard order) is given, then, by just

this determinant:

CJ^JP...^!*
1^

* JOT example, for the configuration 2s Sj)
1
, A =3 and =8, the possible sets of quantum

numbers being given, for the M/nz scheme, by ,1 =2s C^, ,2=2 0~,,3=3pl+, /4=3pl-, /5=
for the jm scheme by l=2*i, 2=2*& k 3=
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Since the transformation (I) lias no components connecting sets belonging

to different shells, the determinant (4) and hence the transformation co

efficient (5) splits up into a product of factors each referring to a single shell.

For example, if the configuration consists ofM electrons (I ... M) in shell SP

and N M in other shells^ we may split off a factor giving the dependence

on shell ?:

1 at\ / am.

(6)

Because ofthisproperty, in consideringtherelationbetween these coefficients

for JS? and 9t we may restrict ourselves purely to the shell SP so long as the

other quantum numbers are the same for the correlated states of J2? and St.

We shall suppose that there are altogetherm states in the shell &*, and con

sider the relation of these components for the configuration consisting of e

electrons to that consisting ofm electrons in this shell.

Let us seek an invariant correlation between an e-electron state and the

(m e)-electron state whose e missing electrons have the same quantum
numbers. This correlation is to be independent of the system of zero-order

states used in the description. We shall denote a given e-electron state by

YCoc
1 a2

. . . a ) and the corresponding (m e)-eleetron statebyT(a
x a2 . . , am~

) y

where the a
?

s and a s together make up the set 1, 2, ... 3
m.

Let us define a linear operator Z by the relations

(7)

This operator is seen to be unitary, since the states on the right form a

normalized orthogonal system. In the primed scheme we shall define a

corresponding operator f
Z by

). (8)

The relation between t
Z and Z is given by the following calculation :

...a

- S -D

since the terms for c1= a1
,

. . ., c
m~e= am~~

furnish just the Laplace expansion

cs *9
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&amp;lt;yf3\

*&quot;&quot; m
j wMle the otter terms vanish. Since any state may be ex-

\I.,.m/
pressed in terms ofthe T(xl a2 ... a ), we see by comparison with (7) that

TMs shows the operator Z to be invariant to within a constant factor,

If we apply this operator to an -electron state and then take the complex

conjugate, we obtain an invariantively correlated (m e)-eleetron state.

We take the complex conjugate because by (7) Z acting on a state gives a

state in the dual space., whereas we want a state in the same space.*

We may now calculate the relation between the transformation co

efficients:

since a transformation coefficient is invariant under a unitary transforma

tion. TMs shows that the transformation coefficient connecting two e-

electron states is essentially the complex conjugate of that connecting the

(m }-eleetron states whose missing electrons have the same quantum
numbers; and gives the exact phase relation between these coefficients.

5. Hie transformation nlm/n^nljm.

Oftransformations of the type considered in the previous section, we are

most interested in that from the m/rii scheme to thejm scheme. We shall

now show that this transformation is the same for configurations Sf and ^,
with the correlations of I12 . Eecause the transformation factors according
to the shells (cf. 4^6), and since in our correlations all electrons except those

in she! ff have the same quantum numbers for 3? and & } we need only
show that this transformation is the same for the electrons in shell ? in ?

and the m - e electrons in shell 5^ in St.

a linear correlation, since taking the complex conjugate is an invariant, but not

linear (c^F^c^F unless c is real), operation. A linear correlation such as is obtained directly by
omitting the bar on the right side of (7) is invariant only under real orthogonal transformations
of the zero-order states*
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Ifwe denote the msmj states by &amp;lt;j&amp;gt;(nlm/rii)
and the jm states by ifs(nljm),

correlating these schemes respectively with the primed and unprimed
schemes above, the transformation 4121 is given by 458, and is entirely real.

The determinant of this transformation for an I shell is easily shown to be

( l)
J.TMsvalueistx&amp;gt;beinsertedin41210. Moreover, from the standard order

of listing quantum numbers (56
)

it is seen that ( 1)
2 0&quot; =

( I)
3*5* 1

*,

and ( l)2
v
=( iJ-^-w-etf-i), where q is the number of electrons in

Yfa1
oc
2

. . . ae) withj= Z- 1. SinceM=MB +ML ,
412IO becomes

(JPJP ... ^&quot;-^a* ... am~*) = (
-l^^C^jS1

,

2
... j^x1 *2 ... at*). (1)

The states on the right side of this equation have just the quantum
numbers which are missing on the left. Our correlation requires that they
have the negatives of the m8,ml} andm values missing on the left. But this

is easily accomplished. Let the coefficient on the right of (1) be

(wJw,mfm?,...,m;wf|Z4-J^^ (2)

where p + q= e. The coefficient we would like to compare with this is

(-TOj-^V.^-wiJ-mHJ+i:-^^ (3)

If (2) is in standard order, (3) is seen to be also. Now from a comparison
of the two determinants of type 4125 which give the values of these two

coefficients, and by using the relations (cf. 4
5
8)

(msmz|Z+|m) = (
m8 m^Z+J m),

(ms mj[l |m)= (
ms 7Wj|Z J m) 3

it is seen that the element (3) is
(
-

1} times the element (2).

Hence, returning to (1), it is seen that the ratio of the transformation

coefficient for the almost closed shell to that of the -electron configuration

whose electrons have the negatives of the ms,m^m values of those missing

from the closed shell is / __ ^ \jfjt-f(+ix4fl w (4)

When we make the correlations of I12 which include a phase factor ( l)
M*

for themsml
scheme and a factor ( l)(*HX+0 for thejm scheme, we may say

that the m/nrjm transformation is the same for the two configurations.

G. The transforinationjj/Jf^^iJJf.

We have found a correlation between the zero-order states of and 3$

such that the transformations

jjJM^nljm, nljm^nlm/fi^ and nlmsm^SLJM
are the same for the two configurations. This is seen to imply that the trans

formation jjJM^SLJM is the same. More explicitly, the situation is as

19-2
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follows: A given state of the configuration J2? characterized, by the quantum
numbers SLJM (this state is not uniquely determined for two reasons

first, there is an arbitrary phase; second, the set SLJM ofquantum numbers
is not in general complete for more than two electrons so there may be two

independent states characterized by the same SLJM) is a certain linear

combination ofthe wyn/ states; thesaine linear combination ofthe correlated

msml
states of^ is a state of 31 characterized by this same SLJM. A similar

statement holds for a jjJM state except that the missingj
s

s ofM are those

of 5f* The transformation between the LS- and ^&quot;-coupling states of 3k

obtained in this way is the same as the corresponding transformation

farJS?.

Xow to obtain this SL-jj transformation by the combination of the other

three is in general a very tedious process involving the multiplication of

three matrices of high order, for no two of the three transformations are

diagonal in common with respect to more than If. On the other hand the

resulting transformation is diagonal with respect to both J and M and

splits in general into steps of a relatively low order. For example, no two-

electron configuration or its equivalent can have more than four states

of the same J and Jf, while pp or p5p has altogether 10 states of Jf =0,
ddoi dsdhas 19.

It seems, then, to be desirable to find a direct method which will enable

this transformation to be calculated with greater ease. The following

accomplishes this result for two-electron configurations, this being in general
the only case in which the quantum numbers SLJM or jjJM define a

unique state (to within a phase).

The procedure we shall follow is that of calculating the matrices ofX2 and
S2 in the jj-coupling scheme and then diagonalizing them to obtain the

transformation to L8 coupling. Since these matrices will split into steps of

at most fourth order, and since their eigenvalues are known, this diagonal-
ization is a very simple procedure.
The matrices of JL

2 and S* in a non-antisymmetric scheme in which the

first electron has the quantum numbers n 9 1, j, and the second electron the

quantum numbers n 9 I , j 9 with resultant Jy M, are given by formulas
1232 and 1032. We shall define our phases by correlating, in the process of

vector addition, s, IJ; s
f

, l ,j ;j,f, J; with the jl9j29 j respectively of 103 .

Xow jL
2
=I|-f f-f 2i1-JL2 . The first two terms have known diagonal

matrices. The matrix ofthe thirdterm is diagonalwith respect to nl, n l
, JM.

If we omit these quantum numbers, writing simply the values ofj and j 9

the elements of this matrix are given with the abbreviations

to = +
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, ,

--J--l)f
-2wJ^&quot;

(I)

(In the first formula either the upper or lower undotted sign is to be taken

with either the upper or lower dotted sign.)

The matrices of 2S1-S2 and of 2 1 -&amp;lt;S2 and 2S1 JL2 are given by formulas

closely related to the above: In (1) we may replace LT by 5X if we replace

(2w + l)/2w by Ij2w and
-
Ifiw by + l/2w; similarlywemay replace 2by

52 if we replace (2^ + l)/2u&amp;gt; by l/2w and -
1/2^ by + l/2ti/.

In terms ofthese non-antisymmetric matrix components, the components

between antisymmetric states may be obtained by considerations such as

those of 310 . Let a= id, JS
=n V and let all differences in quantum numbers

be indicated by primes, subscripts merely denoting the electrons. Then

unless ot= /?
andj=/ 5 the antisymmetric

Y(oy jSJ JM) = 2-^(*i Ji& J2 J^&quot;)

~ *(*.&& Jlf)! (
2 )

Now if t; is a symmetric observable, diagonal with respect to njh and Wgig,

it is easily seen that for non-equivalent electrons

(ajjSjVIfHaj^ (
a ^^) (

3 )

Consideration of the matrix element

(ajoc/ Jif |v|a7* aj* /If)
= (jj \v\JT) (

4
)

for equivalent electrons must be divided into three cases. First, if j

j
tt

^j
m

, (2) applies to both states, and

Second, if jVj ,/ =J
OT

, ^(JiJD is a^^J either antisymmetric or sym

metric, corresponding to allowed and excluded states. For an allowed state

we have (cf. 3*2)
(jj \v\j j&amp;gt;)=V2tfi M jj)- 0V/) (5b)

Third, ifj =/,/=
j&quot; ,

and both states are allowed, we have simply

These formulas, then, enable us to calculate the matrices ofL2 and S2 for

antisymmetric states in$ coupling using the non-antisymmetric values (1).
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The diagonalization of these matrices for all two-electron configurations up
to dd gives the set of transformation matrices in Table I 12 . On the left of

the matrices are given the values ofj and/ for the jj-coupling states the

J value is shown at the top in the RusseU-Saundeis notation. The trans

formations are independent of M.

TABLE I12.

G.%

-S

a

f| a

77?e Transformation from jj Coupling

to L5 Coupling

The jj-coupMng states here have phases in accord with those used in

deriving (I). The phases in LS coupling are arbitrarily chosen. These trans

formations could be used to obtain the matrix of spin-orbit interaction in

LS coupling, since this matrix has a simple diagonal form in jj coupling.
The transformation tojj coupling can alternativelybe obtained by diagonal-

izing the matrix (Table I11
} of spin-orbit interaction in LS coupling; in this

case the phases ofthejj-coupling states wouldnot be determined. This would

possibly be useful for a configuration containing more than two equivalent
electrons if the matrix of spin-orbit interaction is non-degenerate.



CHAPTER XIII

CONFIGURATIONS CONTAINING ALMOST
CLOSED SHELLS. X-RAYS

While most of the considerations up to this point have held in general for

configurations containing any number of electrons, actual calculations by
the methods given have usually become very laborious for configurations

containing more than a very few electrons. There is little hope ofimproving
this situation for multi-electron configurations which actually are very

complicated, such as those which occur for atoms near the middle of the

periodic table. But there is a class ofmulti-electron configurations occurring
near the right side of the table which are given unexpectedly simple pro

perties by the Pauli principle. These are the configurations containing
almost closed shells which were shown in I 12 to have essentially the same

allowed states as the simpler configurations obtained by replacing the
*

holes
*

in the almost closed shell by electrons. The transformations for such

configurations were shown in Chapter xn to be immediately obtainable from

the transformations for the correlated simpler configurations. In this

chapter we shall give an arrangement of the energy-level and intensity

calculations which will enable the matrices to be either obtained directly

from those for the corresponding simpler configurations, or calculated with

no more labour than for those configurations.

1. The electrostatic energy in LS coupling.*

The electrostatic energy matrix for configuration M is in general quite

different from that for 3? and must be separately calculated. Configuration

3t consists of a closed shell minus c electrons, ij
other electrons, and any

number of completely closed shells. For a given state A in a zero-order

scheme, denote the individual sets of the closed shell SP by a1
, a

2
, ...., a ,

a ~\ ..., em
?
where a6*1

, ..., am are the sets occurring in A and a\ ..., a* are

the
&quot;missing* sets. Denote the rest of the sets occurring in A outside of

closed shells by a1
, a

2
, .,, a1

?. It will usually be most convenient to cha

racterize such a state by giving the missing sets and the y others. The

missing sets must satisfy the Pauli principle no two of them can be

identical. By writing down all possible combinations of missing sets satis

fying the exclusion principle, we obtain all possible zero-order states of the

configuration .

* SHOKTLEY, Phys. Bev. 40, 185 (1932);

JOHSSOS, PfayB. Rev. 43, 632 (1933).
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The electrostatic energy matrix has non-diagonal elements between states

of the same configuration only when these differ in regard to two individual

sets. Since these elements have the simple form given by 76
4, involving no

summation over the electrons of shell .9&quot;, they cause no particular difficulty

for configuration M. Since most of the electrostatic energies of interest are

given by the diagonal-sum rule in terms of the zero-order diagonal elements,

we proceed directly to a discussion of the diagonal element for the state A.

TMs diagonal element is given by 962. The summation in 962 may con

veniently be divided into several parts.

First, there are the terms in the summation in which both ofthe individual

sets are contained in completely closed shells; the sums of these terms are

given by 96I2 and 9613. Second, there are terms in which one set is in a

closed shell and the other is one of the
-q
electrons of group a. These terms

are given in simplest form by 96 I I. Third, there are terms in which one set

is in a closed shell, the other in SP. These terms are given, for each closed

shell, by (in e) times 9*11. The terms already considered are the same for

all diagonal elements of the configuration. Finaly, the remainder of the

diagonal element consists of terms in which both sets are outside of closed

shells, and has the value

S [J(afa?)-K(afQ?)] (A)

2 (1)

The inconvenience here is caused by the long summations over the range

e -f I to wi; these we wish to reduce to summations over the more convenient

range 1 to . [For example,, if shell P contains nine d electrons, the sum in

(A) runs over 36 terms, that in
(JJL)

over % terms, while if the range were 1 to

e the first sum would contain no, the second TJ, terms.]

Consider first the sum (A). We may write

S - S t- S

S

+ [J(oa*)-Jf(tfa*)l, (2)
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where we have used the relations J(a
i ai

)^K(a&amp;gt;a
i
], J(a

i
a^)=^J(a^a

{
),
and

Kiata^^K^tfaf). Of the three sums to which we have reduced (A), the

first is a sum over the closed shell SP and is given by 9612. The second is

given by e times an expression of the form 6 11 with nl= n l
f

. Only the

third term depends on the particular state A of the configuration, and this

has a simple sum over pairs of electrons chosen from e.

The term (ft) of (1) becomes similarly
TO 7?

&amp;gt;=E S
3= 1

]- S S [J(a*aO-

of which the first term is given by 96I1 and depends only on the con

figuration.

Since the term (v) is already in its simplest form, we find for that part of

(A\Q\A) which may vary within the configuration the value

&quot;V F T//j irti\ /TY/fi i\1 O(\

- f [J(oaO- ^(a*^)] (fO

w
Hence, aside from common terms, we may calculate the diagonal elements

using the quantum numbers of the missing electrons of shell /* exactly as

for a simple configuration except that we reverse the sign of the interac

tion of a missing electron with an electron in another shell (i.e. in group a).

In using the diagonal-sum rule to obtainfrom these the iS-coupling energies

we must remember that theML and M8 values of the state A are given by

the negatives of the values for the missing electrons plus the values for

group a.

As an illustration we shall sketch the calculation of the electrostatic

energies for np
5n p. We shall use a notation of the type (0+ 1~), in which the

first entry gives the quantum numbers of the electron missing from the np

shell, the second the quantum numbers of the electron n p. The double

entry table giving theML and MB values of the zero-order states then has

the form (cf. 1 7
2)

(5)
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From this we obtain, using the above results, by the usual diagonal-sum

procedure

TMs is one of the important almost-elosed-stieli configurations which is

correlated to a (non-equivalent) two-electron configuration. With regard to

such two-electron-like configurations we may make seTeral general state

ments.

In the first place 3
the configuration l

m~l s Jim the same singlet-triplet separa-

as Is; this means, e.g., that the separations for p*s and d
g s are given by

the same integral as for p $ ds. TMs may be inferred, if we like, from a

generalization of the above scheme to include two or more almost-closed

shells. The procedure is essentially the same as the above with the additional

direction that- one assigns the usual (not the reversed) sign to the integral

connecting electrons missing from two different shells. If we consider the

8 shel of !OT~% as having one missing electron 3 the result follows immediately
from 8s 16.

Second, the electrostatic energies for the tw-j configurations, l
m~i

r, and

Z
** -1

?, am-dafed toll are the same. TMs follows from 86 18 ifwe note thatthe

double entry table of the type (5) for l
m~~l V may be obtained from that for

r -1
! byreplacing thestate (wi^mj ,

mamz) bythe state ( ms m
l ,

m f

s
m^.

Hence, e.g., p
5d d9p have the same electrostatic energies.

Third, since J(i,j) depends on only the absolute values ofmi

8m\,m*8m*l9
the terms in the electrostatic energies involving Fk

3
s for ZII|-1

Z will be just

the negatives of those for IF. I^uthermore K(i,j) vanishes unless m^=m^ 3

hence in a table such as (5) we obtain Gk*s only for states having H8
~ 0;

none of the triplets have G*& in their electrostatic energy expressions. These

facts reduce our calculation for such cases to a determination of the co

efficients of the G%s for the singlets. The following formulas show certain

striking characteristics with reference to these &k*s. For each singlet, at

most only one Gk has a non-vanisMng coefficient, namely that with k=L.
Since for even l-f V coefficients of Gk s with odd k all vanish, and for odd
I+ l

f
coefficients of (?/s with even Jc vanish, every other singlet has the same

energy as the corresponding triplet. TMs peculiarity was not noticed experi

mentally because for such configurations the spin-orbit interaction is

usually as large or larger than the electrostatic.
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The electrostatic energies for several configurations correlated to two-

non-equivalent-electron configurations follow:

*F=-F -2P2 *&amp;lt;?=-P - 5F3

*P=-F ~2F2 +9CK?3 *&amp;lt;7=-P - SPa
8D= -P +7P2

3P= -F + 15F2

D= -F -f7F2 ip= ~F@ -hl5F2
3D= ~F -I2F2

=-F - 4Fa
- P4 tfs-Po-lOPj- 3F4

?=~F - 4F2
- P4

3P=-Fe
- 7Pa+ 84F4

SD=-F ~ 6F2 -f99F4

ip=-p - 7Pf+ 84F4 JD=-P - 6F2 -f99F4

s^= -F -14F2 -126F4
8P= -F -24FS -66F4

*S= -P -14Pa
- 126^4 + 10^0

XP= -P -24Pa -66^ + 700!

.For configurations of the type l
m~~e

containing -purely an almost closed shell

we may say at once that the electrostatic energies are the same asfor the correlated

configuration l . This follows from 8616 if we note that the double entry

table of the type (5) for l
m &quot;

may be obtained from that for l merely by

reversing the signs of all m/s and m/s. Hence d7
, j?

4
, and/

7 have exactly the

electrostatic energies of d3, j&amp;gt;

2
, and /

7
respectively. We may also show that

l
m~ s has the same electrostatic energies as I s 9 for any e.

2. Tlie spin-orbit interaction.

We shall show here that the matrix of spin-orbit interaction in any coupling

scheme with the correlations of Chapter xri is the same for configurations ?

and ^, except for reversal- of the sign of the spin-orbit coupling parameter nl re

ferring to the almost dosed shdl P. Since with the correlations of Chapter xn,

all transformations are the same for Jg? and 3t, it will suffice to show that

this relation is satisfied for any one scheme. The simplest scheme to consider

is the nljm scheme in which the spin-orbit interaction is diagonal and in

dependent of the m s. Its value is given by 1102, in which the coefficient of

tni is given as a sum over the (m- &amp;lt;)

electrons of shell &. If this is written

as a sum over the whole shell minus a sum over the e missing electrons our

theorem is proved, since the sum over the whole shell vanishes. (This
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vanisMng may be inferred, e.g., from the fact that ML= J1S = Q in 472 for

a whole closed shell.)

Hence if the iiS-coiiplmg states of 3t and &amp;lt;? arfe taken as the same linear

combinations of the correlated zero-order states, the spin-orbit matrices in

LS coupling are the same except for the sign of the spin-orbit parameter

referring to shell SP

3. Pure almost-ciosed-sheli configurations.

We have shown in I 13 that the electrostatic energies of the two corre

sponding configurations I and
1^&quot;&quot;*,

which contain electrons in only one shell

outside of closed sheik, are given by the same formulas. This was first shown

by Heisenberg,* who gave two examples of related configurations of this

type which show an almost constant ratio between the term separations.

These are repeated here, with the positions of the centres of gravity of the

terms given in cm&quot;&quot;

1 above the lowest term of the configuration:

The constancy ofthe ratios is striking in view of the fact that the individual

configurations do not fit the first-order theory particularly well (see 57
).

This constancy would imply that the electrostatic parameters all increased

in constant ratio. Such, for example, is the case for the F*s if the two fields

are both hydrogen-like with different effective nuclear charges.

The matrix of spin-orbit interaction for I
OT~ is just the negative of that

for the correlated states of I . This means that in Riissell-Saimders coupling,

all the multiplets which are normal in l will be inverted in l
m~

y while those

inverted in I will be normal in J
m~^. This is a fact well known to empirical

spectroscopists (cf. Fig. 67
). For example, the lowest configuration (p

5
) of

the rare-gas ions Sell, An, and KrII consists ofan inverted doublet, with

the level of lowest j value highest. Since there is only one spin-orbit para
meter if only one shell is involved, the ratios of the term splittings are the

same for the configurations I and I
m~~

, except for this inversion.

From this argument we see that to the first order the terms of the con

figuration IOT/2 have no splitting. This is illustrated by Fig. 511 for the case

of j?
3
. We cannot infer from this argument that the whole matrix of spin-

orbit interaction is zero because for example in LS coupling, while the

* HEDSENBESG, Ann. der Piys. 10, 888 (1931).

f Not observed.
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correlated states have the same SLJM or SLM8ML values, they have

different phases since they are the same linear combinations of different

correlated zero-order states.

The secular equations for the configuration jp
4 are immediately obtained

from those given in 311 for p
2
by reversing the sign of . The energies are

plotted in Fig. I 13 as a function of x= K/^2^^e same manner as for p2 in

Fig. 411 . The only available experimental data are for Tel 5p
4

,
which is

plotted at x= 0-685 (J2 =1227 3
= 4203), determined by making

3P1; the

mean of 1D
2
and^ ,

and the mean of *S
Q
and 3

P^ fit exactly.* The separa

tions between the levels of J= and between those of J= 2 are absolutely

predicted by the theory. This configuration shows slightly the partial,

instead of complete, inversion of the triplet which occurs for x &amp;gt; I

Fig. I 13
. Theeoiifigurationj&amp;gt;

4
ininteimediatecoupliiig. (x=

4. The rare-gas spectra.

The simplest and most completely analyzed of the spectra of atoms con

taining almost closed shells are those of the rare gases and isoelectronic ions.

The bestknown and most typical ofthese spectra is that ofNe I, the observed

levels of which are plotted in Fig. 21S . All known levels of the rare gases are

included in the systems n yfiril, where n = 2, 3, ... for neon, argon, ...; this

makes these spectra greatly resemble one-electron spectra so far as the

distribution of configurations is concerned.

The configurations of each series rapidly divide, with increasing n
9
into

two groups of levels. That the upper group approaches as limit the 2

P^ level

ofthe ion and the lower the 2

Pj levelshows that the interaction which causes

* TMs comparison was originally made by GQUDSMIT, Phys. Rev. 35, 1325 (1930). We have

corrected a slight numerical error in his comparison.
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this splitting is the spin-orbit interaction of the almost closed shell. This is

a large and practically constant interaction for all configurations, while the

spin-orbit interaction of the valence electron and the electrostatic inter

action between this electron and thep core rapidly diminish with increasing

n. This gives the higher configuration members to the resolution of Fig. 213

the appearance of doublets.

J&quot;
^ H _ n &*

IS ^
^ 4$

20-

3f&amp;gt;

I

Alt known /evete included

in the

Fig. 213. The energy levels of neon I. (Scale in thousands of cm-1
. Each line

represents in general a group of observed levels not resolved* on this scale.)

The quantum number which distinguishes levels belonging rigorously to

one parent level from those belonging to the other is the J value of the p5

group, which is also thej value ofthe missing electron. Adding an s electron
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(of j= f) to the J= | level of j)
5
gives two states, of J=0, 1; adding it to

the J= f level gives two states, J=l, 2. This parentage may be shown

schematically as follows :

p5
$?

8^

i -&amp;gt; 1,0

I -&amp;gt; 2, i.

The numbers here indicate / values. Similarly the jj-coupling parentage

for p
5
p is given by

while forpH with I &amp;gt; 1, we have

1.0 2, l

2.1 3,2,1,0,

| -&amp;gt; 2,1-1 1-fM

f -&amp;gt; 2-1,1,2-1,1-2 J+2,Z + l f U-l.

Hence in Fig. 213 3 the upper group of levels (those having the limit
p^)

contains two levels for p^ s and four levels for
$&amp;gt;

5
p, p^ d, . . .

;
while the lower

group contains two levels for p
5 s

9
six for p5

p, and eight for p*d s
.... For

Xel, the configuration p^s is completely known up to 11$, the
J&amp;gt;

5
j3 s are

complete up to Ip, while the
j&amp;gt;

5 cfs are completely analysed up to Wd. Only

two levels of the lowest p5
f have been found.

For those configurations which appear in Fig. 213 as doublets without

structure, the characterization by parentage is almost exact, i.e. the /

value ofthep5
group is a very good quantum number. Since this is the case,

a glance at the transformations of Table I 12 will show that assignment of L
and S values is impossible. The states are not, however, in pure jj coupling.

for the j value of the valence electron is in general not a good quantum
number.* We shall consider the exact characterization of these states in

the succeeding sections.

A plot for the heavier rare gases would present essentially the same

appearance as to the absolute location ofconfigurations as Fig. 213
3 but with

all n values increased by 1 for argon, 2 for krypton, S for xenon, etc. How

ever, the parent doublet splitting increases rapidly. It is about 800 cm&quot;
1 for

neon, 1400 for argon, 5400 for krypton, and 10,000 for xenon. The fine

structure of the parts of the doublet increases less rapidly than this, so for

corresponding configurations the division into two groups becomes sharper

as we go down the series of gases. For krypton and xenon even the lowest

* THs is typical of the coupling near the limit ofany series in any atom. The quantum numbers

ofthe parent levels, in particular theJ values ofthese levels, become asymptotically exact quantum
numbers, because the interactions of the valence electron eventually become very small compared
with the separations of the levels of the ion.
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p
5

p&quot;s
occur In two well-separated groups, so that the parentage may be

quite accurately assigned.

5. The configurations /*$ and d9 s.*

The secular equations for l-l s are the same as those of 311 for Z s if we

reverse the sign of . Hence for G
l

&amp;gt; and all observed cases come under

this category we have in LS coupling a singlet above an inverted triplet.

The transition from LS to jj coupling for p*s is plotted in Fig. 313 as a fimc-

tionofx-K/01-

\ 4 /A
Fig. 31S . The configuration |?

5^ in intermediate coupling. (x=

We see in Fig. 213 that the pVs of neon are all close to the jj-coupling

limit, where they appear as two double levels. This is true of all the rare

gases and rare-gas-like ions. For configurations very close to jj coupling,

the theory predicts that the electrostatic splitting of pis/ be twice that of

p\8, as seen at the right of Fig. 313 . The experimental ratios for the higher

series members of neon are

2-18 2-16 1-95

10s Us
1-43

1 LUPORTE Mid INGOS, Phys. Rev. 35, 1337 (1930);

CosDoy and SHOETLEY, ibid. 35, 1342 (1930).
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The agreement Is good up to 10$, which has a zero spitting for 2p|
10*

j
in

place of an expected splitting of about 8 cm&quot;
1

. TMs term lies very close to

2j?|
7d

}
on which we shall see in 7 13 that there is indicationofperturbation

but a glance at Fig. 813 shows a perturbation as large as 8cm&quot;
1 to be quite

unexpected. For argon, the agreement of the Mgher series members is not

good; the observed ratios are

2p
5 fe 7s 8s 9#

1-19 4-24 -M3 1-29

All other observed p*s configurations have larger values of 1/x and are

plotted in Fig. 313 at that x for which the levels J = 0, 2, and themean of the

two levels ofJ= 1 fit the theory exactly. The agreement is In general good.

I/I
7 -8 -3 ! -9 -8 -7 -6 -5 -4- -3 -2 /

Fig. 413. Interval ratios for d*8. (x=fW7a .)

Just as for I s (cf. 311}, we can find for I&quot;

1&quot;1 ^ a pair of linearly related

interval ratios to compare with the theory. If we take as ordinate

(
8iJ- 8i/+1)/(

1iJ-
8
J!^1) and as abscissa (

3i|-
3iM)/(

3^-i- 3im), we find

tliat 2Z+1 14-1
0== J-G+-P.

The ordinate here is the ratio of the splitting of
^&quot;j

1
^ to the splitting of

Zj^J
1
^, which is (1+ l)jl for jj coupling (abscissa 0). The intervals in c?

9 s are

compared with the theory in this way in Fig. 413 . These configurations tend

to lie closer to jj coupling, which is on the left in this plot, than to L8

coupling. The agreement is again seen to be in general good.
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Unfortunately the spectra of the latter rare earths is not known, so we
have no observed instances of/

13 &.

6. The configuration j?
5 p in the rare gases.*

The configurationpp contains 1 levelwith /= 3 , 3with J= 2, 4with J = I
,

and 2 with J= 0. Hence the diagonalization of the Hamiltonian for this

configuration involves the solution of a linear, a quadratic, a cubic, and a

quartic equation. These equations contain as parameters six radial integrals.

Given the values of these parameters, the solution of these equations is

rather complicated; to obtain the values of these parameters from the

observed energies and then check the self-consistency of the equations, as

we propose to do, is much more complicated. A simplification valid in many
cases can, however, be made. Just as our consideration of one configuration

at a time is an approximation in which we neglect the interaction between

configurations, so we may use an approximation in which we also neglect
interaction between the groups of levels ofthe same configuration which

have different levels oftheionic doublet as parents. This latterapproximation
is expected (cf. Fig. 213

)
to be increasingly good as we go up the series of

configurations in the rare gases.

Since the quantum number which distinguishes levels belonging to one

parent from those belonging to the other is the J value of the jp
5
group (i.e.,

the j value of the missing electron), in order to split the secular equation

according to parentage, it is necessary to obtain the matrix of the Hamil
tonian in the jj-coupling scheme.

The matrix of spin-orbit interaction is seen from I10 and 213 to be

diagonal mjj coupling, with the elements

m ff* np n pP np

o (|,f): -jr +K c (fcf): r +K n \
&

&amp;lt;l.i): -W- d (i,: T~ C-
l J

In the parentheses are given thej values first of the j?
5 core and then of the

addedp electron. The letters a, 6, c, d are introduced as a convenient abbre

viation for the four possible combinations ofj values. States labelled by a

and b belong to the lower doublet level, states labelled by c and d to the

higher doublet level of the ion. These elements are independent ofthe J and
M values of the states.

The matrix of electrostatic interaction is diagonal in LS coupling; the

diagonal elements are given in I13 . With the transformation of Table I12

this matrix is found injj coupling to have the value

*
SHOBTUEY, Pfcys. Rev. 44, 666 (1933).
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3*

3a
j

-Jt
|

2o 2d 2c

307

26

la

Ic

It*

Ic

(2)

Oa

(ki

In the notation here used the J value is given as an arable numeral} followed

by a letter which specifies the electronicj values according to the scheme (
1
)

.

The matrices are independent of the value of If.

Adding the spin-orbit interaction (1) and spitting these matrices accord

ing to the parent j values as indicated by the broken lines, we obtain the

following equations for the energy levels:

Upper l&mis

(2c) -J-
fl
+

=s -j + r- c

Lower Umis (3)

The six unprimed levels of this group belong in our approximation rigor

ously to the quantum numbers assigned to them. The eigenstates for the

primed levels are linear combinations of those for the corresponding un-

prinied levels. We arbitrarily denote the higher of the two levels by of and

the lower by 6 since the level a would lie above the level b ifthe electrostatic

interaction vanished.
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Xow the value of one of the parameters, , should in all cases in which

our approximation is good be obtainable from the splitting of the parent

doublet, which is just f But this splitting is known from the spectra of

the ions only to an accuracy ofone cm&quot;
1
. Hence we prefer to determine this

parameter, along with the rest, from the data for each configuration, and

then to check it against the doublet splitting of the ion later.

The six linear expressions in (3) should determine the six parameters.

From the values ofthe parameters we could then predict absolute positions

=f=

;[nujr-
a

L ._.

aocl-

-WOr-

L

00

Od

On

=g= : -*-

Oa

/c

p.-,,

^b
30

Zb&quot;

Sp \ 6p
3
O

Fig. 513. The configurationp5p in neon.

of the other four levels. However, in order to make the values of the para

meters less sensitive to the small perturbations which must exist both

between the two parts of one configuration and between neighbouring

configurations, we prefer to fit by least squares the eight quantities obtained

by adding to the above six levels the means of 2a* and 26 and of la and 16 .

This leaves the separations 2n 26 and la 16 to be absolutely predicted,
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The results of such a calculation are shown in Fig. 513 for neon, Fig. 613

for argon, and Fig. 713 for krypton and xenon. In these figures the empirical

value for 16 has been taken as the zero for each configuration; a break in

the wave-number scale indicates the separation between the two groups of

levels. The scales are in cm&quot;&quot;

1
.

The first question one asks concerns the validity of the neglect of inter

action between the two groups oflevels. Ifthe parameters we have obtained

AffGON I

_ m/o- too _

5p 6p Tp 8p

Fig. 613. The configuration p*p in argon.

are approximately correct, the magnitude of this interaction may be found

by using the interaction elements ofthe
matrices (2) according to the second-

order perturbation theory. In this way the largest interaction was found to

have approximately the value represented by the length of the short black

bar drawn underneath each configuration. This gives an idea of the agree

ment to be expected in the comparison.
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Having obtained the values of the parameters, one can readily find the

coefficients in the expansion

(JaiJa }-f^
f
(^){J61/a )

JalJb j+^JbKJblJb ).
(

We may call
|(Ja\Ja

f

)\
2 the purity ofthe levels Jo! and Jb r

. It is, so far as

this work is concerned, purely accidental that the electrostatic interaction

-&quot;-

COQOr-

- /c-

T - -
la

L ib

S 3
3 ^O u

*l

26* woo -

Iff

-/c- -/c_

_Ib

Ib

6p 3 I (v.ld) I

KttrPTQM I 4p
s
np XENON I Sp

s
6p

Fig. 71S
. The configuration j3

5y in krypton and xenon.

between Ic and Id Tanishes identically and hence that these levels are to

our approximation 100 per cent. pure. To the same approximation the

separation between these two levels represents just the doublet splitting of

the np electron in the central field due to the core.

Neon I (c/. Fig. 513
).

The 2j9
5
3p is taken from the work ofInglis and Ginsburg,* who solved the

complete secular equation in LS coupling using the levels of J= 0, 2, 3, and

* iNGiisaud GIXSBUBG, PBTE. Rev. 43, 194 (1933); corrected by SHOBTLEY, ibid. 47, 295 (1935).
In regard to this configuration see also ROZEXTAL, Zeits. fur Phys. 83, 534 (1933).
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the mean of the four levels with. /= 1 to obtain the parameters, leaving

otherwise the J= 1 levels to be absolutely predicted.

The 2j?
5
op is the first of the series to which our approximation is at all

applicable. These levels agree to within the rather large maximum inter

action between the groups.

For 2p
s
6p, the interaction is much smaller and the agreement corre

spondingly better.
TABLE I13 . Xeon 1 2j?

5
np.

3p 5p 6p lp

2p
5
Ip is found to agree not at all; the reason is that the lower 8p group

exactly overlaps the upper 7p and is therefore expected to interact strongly

with it.

The values of the parameters (in cm.&quot;
1
) and the coefficients in (4) are given

by Table I13 . The significance to be attached to these values must be judged

by comparison with Fig. 513 . The value of is to be compared with the value

521 obtained from the parent-doublet splitting of 782 cm&quot;
1

.

Argon I (c/. Fig. 613).

Thepp configurations of argon remain rather well separated from each

other up to 3p
5
Sp, the last of the series which is completely known. Bp (Oa)

falls about 200cm-1 below 7p (Id) and the lower group of lip falls close to

the upper group of Sp as indicated in the figure. There is definite evidence of

perturbation on 8j&amp;gt;.
The 5/group overlapping Bp does not have a pronounced

effect.
TABLE 213

. Argon I Sp
5
np.
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The constants are given in Table 213
. The value of is to be compared

with the 954 obtained from the ionic doublet splitting of 1431 cm-1
.

Krypton I and Xenon I (c/. Fig. 713).

Even the lowest p*p s of krypton and xenon are amenable to treatment

with our approximation. For krypton the 2p
5
5p and 6p are completely

known. The 2p
5
5jp agrees to within the error of the approximation. The 6p

shows definite evidence of outside perturbation which is undoubtedly

mainly due to the lower group of 7p which lies at only 6200 on the Bp scale,

rather than to the 5f levels plotted.

In xenon only the &p
5
6p is complete. This in the first plot agrees very

poorly with the calculations. It is definitely perturbed by the lower
7j&amp;gt;

group which overlaps as indicated. Although one cannot make a rigorous

assignment of these overlapping levels to configurations, one suspects on

comparing this figure with the others that the highest J=l of 7p might

belong more exactly to 6p than the Id assigned to it. If we make this re

arrangement, we obtain the plot on the right, which shows a decidedly

better agreement.
TABLE 313

.

Jn/p$on 1 4j)
5
np Xenon I 5p

5
ftp

The constants for these spectra have the values given in Table 313 . % for

krypton is to be compared with the 3581 obtained from the ion. The doublet

splitting for the xenon ion is not known.

7. The configuration p5 d in the rare gases.

The diagonal elements of spin-orbit interaction forp5 d injj coupling are

-**
Ti p5 nd

d (j!i):
(i)

where we have introduced a notation a, b, e, d similar to that used for p5
p.

Here the parameter p , which is the same as the former , accomplishes the
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spitting of the configuration into two groups, states characterized by a and

b lying in the lower group, those characterized by c and d in the upper.

Transforming the electrostatic energies of I13 to jj coupling gives the

matrices
4a

-2F,

3a

35

2d

la,

Id

- - 1VioJs
-

-1-V21F,

(2)

Justasinthecaseof^wefi

belonging to different parents, the following formulas to express the twelve

levels in terms of six parameters:

Upper levels

(3c)=-F + J,+ & -^^Gs

(2c) =-F -f + L

Lower lends

36 1
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We take the six levels given by linear expressions and the means

of 3a
3
36 : 2a

,
2b

f

; and la ,
16

; fitting the six parameters to these nine

quantities by least squares. This leaves the 3a -36 ,
2a -2b\ la -lfr separa

tions to be absolutely predicted.

From Fig. 213 we see that our approximation should be applicable to all

thep5 d s of neon I. Since these are known completely from 3d through lOi,

we obtain the long series of configurations plotted in Fig. 813 . These all

agree within the accuracy of the calculation except 6d and Id, which are

clearlv perturbed. The most of this perturbation is due to the fact that the

upper group of Bd lies only 26 cm-1 below the lower of Id. That there is

further perturbation on the upper group of Id is shown by the abnormally

large 2c-M separation, which should be just the 7^-electron doublet splitting.

This further perturbation may be attributed to the fact that the lower part

of 9d lies 100 cm-1 above the upper of Id and perhaps to the 2_|?
5 10s which

lies about 20 cm&quot;
1 above Id.

The constants used in these calculations are given by Table 413 . The value

of tp is to be compared with the 521 obtained from the ionic doublet splitting.

We should from the values here given predict a doublet splitting of

780-4 0-2 cm&quot;
1 in comparison with the observed 782 cm&quot;

1
.

Thus the present theory accounts very satisfactorily for the observed

structure of these rare-gas configurations. The perturbations which occur

seem to be small except when two configurations ofthe same series overlap.

Since there can be no spin-orbit perturbation corresponding to the inter

action which splits the configuration into two groups, in estimating the

mutual perturbation of two configurations we should compare the distance

of the nearest levels not to the overall configuration size but to the much

smaller spread of each group of levels. This requires that two configurations

Me very close in order appreciably to affect each other.

TABLE 413. Neon I 2p*nd.

3d 4d 5d 6d Id Sd $d lOd
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8. Line strengths.

We may say immediately that the line strengths in any coupling scheme,

for transitions between two configurations 3t and 3$ having the same almost

closed shell, are the same as for the corresponding configurations J? and J2
7

.

To see this we note that in the nlm^ scheme the quantum numbers in the

almost closed shell cannot change since one of the other electrons definitely

jumps. Since all quantum numbers except those of the almost closed shell

are the same for the correlated states of ^ and %, the strengths in this

scheme must be the same. The transformation to any other scheme is the

same for the two cases, hence the transition arrays have the same strengths

in any coupling scheme.

Thus, e.g., the array j&amp;gt;

5
-&amp;gt;p

5p has the relative strengths given by Table 29

or by Table 3M for p$-+pp* We may obtain the relative strengths in any of

the rare-gas transition arrays by using the matrices of S^ injj coupling and

the transformations of the eigenfunctions to the jj-coupling scheme as cal

culated from the observed energy levels. The neon array 2p
5
3p-+2p

5 3s is

discussed briefly at the end of 411
.

9. X-ray spectra.

The characteristic X-ray spectrum of an element is obtained usually by

making that element, or a compound containing it ?
the target in an electron

tube so that it is struck by a beam of electrons which have energies corre

sponding to some tens of kilovolts. Under this excitation the atoms emit

radiation of wave-lengths in the general range one to ten Angstrom units.

Owing to their great wave-number, the spectroscopy of these radiations

requires a special experimental technique. This is fully treated for example
in Siegbahn s Spektroskopie der EontgenstraMen.* We confine ourselves

to the theoretical problems involved.

These high-frequency radiations arise from transitions between highly
excited states of an atom, corresponding to configurations in which an elec

tron is missing from one of the inner closed shells of the normal atom.

Practically all X-ray spectroscopy is done with the emitting matter in the

solid state. It turns out that the interaction energy between the atoms in a

solid is of the order of a Bydberg unit or less, whereas in ordinary X-ray

spectra the energies are a thousand times greater. Thus to a first approxima
tion such interactions may be neglected and the spectra interpreted as due

to isolated atoms. Of course the term *

X-ray spectra is a practical category

arising from a classification by experimental technique. From the theo

retical standpoint there is no sharp distinction between optical spectra and

X-ray spectra, the two merge in a natural way. But experimentally they
have been quite effectively separated because of the great experimental

* Second edition, Julius Springer, 1931.
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difficulties ofworking In the soft X-ray region and the extreme ultra-violet,

where the merging takes place.

Let us consider one of the heavier elements. Its normal configuration

will be l
2 2s2 2p

6 3s2 3p
6 3d1 4^2

. . . . Here the shells have been written down
in order ofthe firmness with which their electrons are bound to the nucleus,

that is 3
in the order ofthe energy levels ofthe central field best suited for the

start-ing point of the perturbation theory. Ifwe remove an electron from the

Is shell and put it on the outside (just where, on the outside, does not matter

in the first approximation), the energy of the resulting configuration will be

very high. This level (really a group of levels quite close together if the

structure due to the outer electrons not in closed shells could be observed)

is called the K level. Similarly if an electron is removed from the 2# shell we

obtain a level not as high as the K level which is called the LI level.

If an electron is removed from the 2p shell we are left with ap5
configura

tion plus closed shells. This gives rise to an inverted 2P term. Evidently

removal of just one electron in this way from any one closed shell will give

rise to a doublet term, the nature of the term being the same as in alkali

spectra but with the doublets inverted. The relation of the conventional

X-ray level notation to the usual spectroscopic notation is given here;

The table ends with Y and Pm since the 5f and 6d shells do not get filled

in the known elements.

Of course the foil scheme of levels as here presented is only present in

those atoms which contain normally all of these closed shells. If we start

with uranium^ where this scheme of levels is folly developed, and consider

in turn elements oflower atomic number, the scheme ofX-ray levels becomes

simpler through the absence of the later entries in the table, for one cannot

remove an electron from a closed shell that does not exist in the atom. For

example in Mo (42) the scheme of the table extends to ATnl as the 4d shell is

only half-filled with this element (see I14).

To ignore the structure of the X-ray levels due to the outer electrons not

in closed shells is formally the same as supposing that all electrons present

are in closed shells except for the one shell whose openness is indicated by

the above terminology.
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The X-ray Hues are produced by transitions between these levels. This
level scheme, together with the selection roles AZ= I, AJ= 0, 1, gives an

adequate description ofthemainfeatures oftheobserved spectra. Inaddition
there are observed weaker lines some of which receive their interpretation
as quadrupole transitions in this level scheme. Other lines, sometimes called
c

non-diagram lines* because there is no place for them in this simple level

scheme, are supposed to arise from transitions in a level scheme associated
with removal of two electrons from the inner closed shells.

TheK series oflines in an X-ray spectrum is produced by transitions from
the JK level to various lower levels. Thus the K^ line is produced by the
transition from the K level to the m level. In this transition an electron

jumps from the 2p shell to the la shell, that is, in a transition from the K
level to the L level an electron jumps from the L shell to the K shell. It is

sometimes convenient to focus attention on the missing electron or hole in
the and to say that in the transition from the K level to the m level
the hole jumps from the K shell to the L shell. The behaviour ofa hole is just
opposite to that of an electron : the normal state of the atom corresponds to
the hole being in the outermost shell, that is, to all of the electrons being as
far as possible in inner shells.

The shift of emphasis from electron to hole is also useful in discussing
X-ray absorption spectra. We cannot have an absorption line in normal
atoms corresponding to a jump of the hole from the L shell to the K shell
since in normal atoms there is no hole in the L shell. In normal atoms the
holes are oa the outside so the X-ray absorption spectrum is produced by
the transition of one of these outer holes to an inside shell. The absorption
spectrum is thus directly affected by the external structure of the atoms
and the way in which this is influenced by the physical and chemical state
in the absorbing substance. Such details we do not treat as being outside
the scope of the theory of atomic spectra.
The theory of the X-ray energy levels, neglecting structure due to outer

electrons, is thus that of a one-electron spectrum. Suppose our central field

approximation is based on the potential function U(r) and that we define
the effective nuclear charge Z(r) at distance r by the equation

TJ/ , Z(r)e*
Z7(r)- LL_.

(1)

The force on an electron at distance r is then

_3U__[Z(r)-rZ (r)]e*

fo ^ (2)

The quantity in brackets is the effective nuclear charge for the force on the
electron at distance r, which we denote by ZJr):
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We know that Z
f(r)-+Zas r-^0 and Z

f(r)-*l for r greater than the
*

radius of

the atom. If we are dealing with a state of the atom in which the radial

probability distribution has a strong maximum at r= 6, it is natural to

suppose, as a rough approximation, that the energy of the electron will be
close to that of an electron in the Coulomb field

r
ft(r) M-Z (6) (4)

as this has the same value and the same slope at r=6 as has the effective

field Z7(r). Tor such a field the energy levels are given by 55 1 1 including the

relativity and spin effects.

The development of such a theory of the X-ray levels is largely due to

Sommerfeid.* It fits the facts surprisingly well. The account of it we have

Just given is incomplete in that it does not say how b is to be chosen. Let us

approach this question through an examination of the empirical data. If

we subtract the rest-energy ^c
2 from 5s

1 1 and measure energy with the Ryd~
berg unit, then eaoh electron has an energy given by that formula on writing
in the proper quantum numbers, writing Zf(b) for Z and subtracting the

constant term e2Zf

(b). (Note that BA Z
f

(b) is negative this adds to the energy
and hence decreases the absolute value of the negative numerical value of

the energy of each electron. It represents the fact that the inner electrons

move in a region where their average potential energy is increased by the

presence ofthe outer electrons; this is sometimes called
*

external screening.*)

Consequently the atom s energy is increased by the amount of one of these

energy levels when the corresponding electron is removed. Accordingly the

X-ray levels should be given by this formula with the opposite sign, which

puts the K level highest as it corresponds to removal of the most tightly
bound electron.

Let us consider first the K levels. Their values are given for most of the

elements in Table 513 as summarized in Siegbahn s book. The energies in

creaseroughly as the square of Z., corresponding to the first known empirical

regularity in X-ray spectra, as discovered by Moseley. Moseley found that

the square roots of the line frequencies are approximately a linear function

ofZ. Ifthe square root ofthe frequencies in Rydberg units be plotted against
Z, the curve is strikinglylinear, with slope close to I . The departuresfrom the

Moseley law are put strongly in evidence by plotting Vp Z against Z to

remove the main linear trend. Such a plot is given in Fig. 913 .

The formula for the K level is, in Rydberg units,

* SOMMXEFEID, Atomban nnd SpeidraUinien, 5th edition.
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Expanding the second term in powers of a and taking the square root , we find

(6)

TABLE 513
. The K levels of the atoms in Sydberg units.

Element Element v(K)

The quantity (ZZ$ is often called the internal screening constant. It

might be expected to be equal to one or two : it is some kind ofaverage ofthe

amount of charge of the other electrons in the atoms that is closer to the

nucleus than the 1$ electron. It is harder to sayhow the term e2Z (b)j2RZfhc

will depend on Z. Ifwe had n electrons on a sphere of radius
/&amp;gt;

the potential

energy ofan electroninside the sphere would be ne
2
jp and this term measures

such a potential. As Z increases we have more shells so this term becomes

Swe2
/p for the shells present. On the whole it seems reasonable that this

increases more rapidly with Z than the first power; hence in spite of the Z
1

occurring in the denominator this is perhaps a slowly increasing function

ofZ, As it appears here with reversed sign it will contribute a slowly decreas

ing function ofZ to theK level. The third term is quite definite as soon as we
know the screening constant Z Z

f
. Using Z- Zf

= 2, the dotted curve in

Fig. 91S is obtained by subtracting off the third term from the experimental
values of Vv^ Z. The dotted curve therefore shows the combined effect of

the external and internal screening. We see that it decreases rapidly except
at the large values of Z, where higher terms in the expansion become

appreciable so that the curve becomes meaningless. The value of Z Z*

obtained is between one and two, so we see that the effect of the internal

screening is as surmised above.
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In view ofthe eradeness ofthe model we do not believe there is much to be

gained by attempting to choose Zf
and Zi

f

(b) in such a way as to represent the

data best. The formula evidently is in accord with the main facts and that is

all that can be expected.

This same model has also been used to discuss the doublet intervals in

X-ray spectra. Let us consider the L levels. L^ corresponds to removal of

a 2s electron while Lu and LITI correspond to the inverted 2P given by the

2p
5
configuration. For the same n the hydrogenic s states penetrate more

closely to the nucleus than the -p states. Therefore the 2s electron is more

tightly bound than the 2p so the L^ level will be higher than Lu or LIU .

The difference will be partly due to the difference in screening and partly to

the spin-relativity effects. For a reason that has since become meaningless,

Fig. 913. Plot of Vv(K) Z against Z to show departure from the Moseley law for the

K. levels of the elements.

the LT and Z*n levels^ and in general the pairs of levels of the same n and J

but different L, are commonly called
*

irregular doublets.
3

Ifwe calculate the doublet interval between LU and ijjj by means ofthe

hydrogenic formula, assuming the same values ofZ (b) and Zf(b)
for the two

levels, we find to the first order that the intervalshould vary as Z* . Hencewe

can conveniently test the formula by calculating empirical values of Z Z
f

from the doublet intervals and seeing if they have reasonable magnitudes.

The quantity calculated in this way is sometimes called the screening

constant for doublet separation. Such comparisons have been made by
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Sommerfeld and others,* and have shown that the simple screened hydro-

genie model gives a good account of the main facts.

10. Mme strengths in X-ray spectra.

As emphasized in the preceding section, the X-ray energy-level scheme of

the atoms has the structure of a one-electron spectrum. From 813 we see

that the theory ofthe relative line strengths in a doublet spectrum is applic
able here. For example, the relative strengths of Ka2 (1

2S^2 2
P^) and

K&i (1
2

5|-&amp;gt;2

2

Pj)
will be as 1 : 2

5 according to the results of 65 . This is in

accord with the experimental data:

(1) DTASE and STEKSTBOM, Proe. Xat. Acad. Sci 6S 477 (1920).

(2) DUASE and PATTEKSQN, ibid. 8, 85 (1922),

(3) SIEGBAHN and ^A&SL, Ann. der Phys. 71, 187 (1923).

Likewise in the K series the lines K$i and K
j83 form the same kind of

doublet. Allison and Armstrongf found intensity ratios of 2-1 and 2-0 in

Mo and Cu respectively for this doublet. They also measured the relative

intensities of the doublets arising in the hole transitions ls-*3p (JT j81? Kf}%)
and

l*-&amp;gt;-4p (Kfts). The ratio of the intensity of the first of these doublets

to that of the second increases with decreasing atomic number:

Element Intensity ratio Strength ratio

W (74) 2-3 2-6

Mo (42) 7-7 8-3

Cu (29) 41-0 42-0

The third column gives the ratio of the strengths as obtained by dividing the

intensity ratio by the fourth power of the frequency ratio. The great ratio

obtained in the lighter elements is due to the greater difference in the relative
effect of screening on the 3p and 4p radial function for small Z. No calcula

tions of these relative strengths have been published.
In the L series we have the possibility of studying the relative intensities

in a 2P-^ 2D multiple! Forthe hole transition 2p -&amp;gt; 3d!the lines and measured
relative intensities are

* SOMMEBFELD, Atombau und SpekiTaMinim, 5th edition, p. 297;
PATMHG and GOUDSMIT, TJk Structure of Line Spectra, Chapter s;
PAUUHG and SmESMAy, Zeits. fur Kristallographie, 81, I (1932).

f AXUSOH and AEMSTEOKG, Froc. Nat. Acad. Sci 11, 563 (1925) ; Phys. Rev. 26, 701, 714 (1925),
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Element L a*

Mo (42) 1 0-130 0-33 (0-28)
Eli (46) 1 0-133 0-24 (0-20)
Pd (46) 1 0-119 0-20 (0-16)

Ag (47) 1 0-122 0-17 (0-14)

As the first two lines have the same initial state, their relative intensities

should be the ratio of the relative strengths multiplied by the fourth power
of the frequency ratio. The relative strengths from 29 are as 9: 1 or 1: 0*111.

The 2D interval in theM levels is so small here that the frequency correction

is negligible , so the relative intensities are the same as relative strengths and

are seen to be in good agreement with the theoretical ratio . Assuming natural

excitation the relative strengths ofthe first and third line are obtained from

the relative intensities by dividing by the fourth power of the frequency

ratio. The results are given in parentheses. All the experimental values are

less than half of the theoretical value f ; this is probably due to the lack of

natural excitation, the higher level 2
P| being considerably less excited than

the lower 2Ps level. Jonsson* has estimated the correction for excitation and

has found values which check much better with the theoretical 9:1:5

strength ratio.

Wentzelf has given a theoretical calculation of the relative strengths of

the different multiplets originating in the L levels based on use of approxi

mate eigenfunctions. Experimental measurements bearing on this question

have been made by Allison.J

it. X-ray satellites.

In addition to the lines which are accounted for by transitions in the

doublet energy-level diagram of the preceding sections there are observed

a number of other lines known as satellites or non-diagram lines. These

are close to the more prominent lines which are accounted for by the discus

sion just given. Such satellites were first studied by Siegbahn when observ

ing the La. lines of Sn5 Ag, and Mo. Since then they have been the object

of considerable study.

The doublet structure is so simple that it is evidently necessary to con

sider the energy diagram corresponding to more than one non-closed shell

to get any more detail. Several possibilities are open. WentzelH suggested

double ionization (two holes) ofthe Is shell as an initial state of the satellites

oftheK lines. Then he supposed the satellites to be emitted when one ofthe

* JOSTSSON, Zeits. fur Fkys. 46, 383 (1928).

f WBHTZEI*, Naturwiss. 14, 621 (1928).

J AMJSON, Phys. Rev. 34, 7, 176 (1929).

SIEGBAHH, Ark. 1 Mat. Astrom. Fys. 14, No. 9 (1920).

fl WiarrzEL, Ann. der Pkys. 66, 437 (1921); 73, 647 (1924).
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holes jumped to an outer shell. For initial states of some of the lines lie

suggested triple ionization with two holes in the K shell and one in the L

sheE. The relations proposed by Wentzel are best considered from Fig. 1013 ,

which is a schematic level diagram.

The first column shows the ordinary level diagram. In the second column

we have this diagram extended for the case of two holes. The energy of

removal K\ of the second Is electron will be greater than K, that for the

first, but owing to screening not as much as the K of the element whose

atomic number is one greater. Similar remarks hold with regard to L as

compared with L. Xow L 1

will be greater than L&quot; because 2p is screened

-Is 0*3

-Is 2

-Is2p

-Is22p

-IsZp*

-2p*

-2p

-Normal

Fig. 101S . WentzeFs interpretation of the K satellites. The levels are labelled

by the configuration of the missing electrons.

more by is than by another 2p, and so on. Hence one readily concludes

that (,- %) &amp;lt; (*5
-

*s) &amp;lt; (
~

**)

where xn is written briefly for the wave number of the corresponding line.

The values, in Rydberg units, found by Wetterblad* are given below:

Na(ll) Mg(12) Al(13) Si (14)

0-52

0-57

0-65

0-64

0-67

0-76

0-71

0-76

0*83

0-83

0-91

0-94

Moreover, since Is is so much closer to the nucleus than 2p y absence of a Is

electron is almost like a full unit increase in the nuclear charge in its effect

on the others, so (ae a4) of one element should be nearly the (a3 oc^ ofthe

next element. This is the case here.

* WBTTEBBLAD, Zeite. fur Phys. 42, 611 (1927).
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The main objection to WentzePs interpretation concerns the question of

producing these multiply-ionized states. The mean life is so short that

excitation by two successive singly-ionizing impacts cannot be effective;

therefore the electron impacts must produce double excitation. TMs requires
more than twice the usual K critical potential to produce the line K oc4 .

Backlin* studied this point in Al and found that K a4 appeared at definitely

lower voltages than expected on this hypothesis. It does appear however

that the satellites require higher voltages (by about 25 per cent.) on the tube

for their appearance than the related main lines.

Is

. ?
,ss

fs2$

IP

-Jp Is2p

ip

lip 2s2p

4 V
-2s

~2p

0%

(Wolft)

Normal

Fig. I11S. The Langer-Wolfe interpretation of the K satellites.

(Configoration labels are for the missing electrons.)

In WentzePs work no account was taken ofthe complex structure arising

from electrostatic interaction of the holes, although he mentioned it as a

possibility in later papers.f The importance of this structure was empha
sized by Langer. J On account of the existence of such structure the K
satellites can be provided for without using the triple ionization process or

the double ionization of the K shell. Langer s level scheme and assignment

ofthe satellites isshown in Pig. 1 113 . This scheme is consistent with the small

r, Zeits. fur Fhys. 27, 30 (1924).

f WEOTSEL, Zeits. fur Piiys. Si, 445 (1925); 34, 730 (1925).

$ LASTGEB (abstract only), Hiys. Rev. 37, 457 (1931).
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excess in the critical potentials of the satellites over those of the main lines.

Similar views have been put forward by Druyvesteyn.^ Some calculations

of the terms arising from these configurations have been made by Wolfef

using a Hartree field for potassium. His assignments of the lines differs

from Langer s and is shown in the lower row of the figure. The calculations

show that the structural energies are of the right order of magnitude to

account for the satellites but the detailed assignments are quite uncertain.

It seems quite likely that the X-ray satellites are to be accounted for by
double excitation levels, but there still remains much to be done before the

interpretations are satisfactory.

MehtmyerJ has developed a somewhat different view of the origin of

the satellites in which two-electron jumps as well as double-hole levels are

employed. As, generally speaking, two-electron jumps are weaker than

single-electron transitions
s
it seems that such processes should not be con

sidered unless it is found that the one-electron jump picture is inadequate.

Another possible source of more detailed structure is the open shells in

the outer structure ofthe atom, as was noted by Coster and Bruyvesteyn.

The relation of the filling of electron shells to the periodic system of the

elements is discussed in I 14 . As mentioned in 913 the doublet structure of

the X-ray levels depends on a model in which there is but one hole in the

shells. For elements in wMch an outer shell is being filled the outer shell is

incomplete^ so there should be a complex structure due to the interaction of

the outer electrons with the open inner shell. Such interactions are pre

sumably somewhat smaller than one Bydberg unit and in case of ordinary

resolution give rise to broadened lines more than to observable structure.

Structure of this kind, if appreciable, we should expect to be sensitive to the

state of chemical combination of the element in the source. These ideas

have had practically no detailed development thus far.

*
BErnneSTEYN, BIss. Groningen, 1928; Zeits. fur Phys. 43, 707 (1927).

f WOLFE, Phys. Rev. 43, 221 (1933); see also KEKXABD sad BAMBEEG, Pihys. Bey. 46, 1040

(1934).

f RICHTMYBE, PhiL Mag. 0, 64 (1028); Phys. Bev. 34, 574 (1929); J. franklin Insfc. 208, 325

(1929).

COSTEE and DBUYVJSHTKXK, Zeits. fir Pliys. 40, 765 (1927);

COSTEE, tirid. 45, 797 (1927).



CHAPTER XIV

CENTRAL FIELDS

1. Tlae periodic system.

We have now to consider some of the relations between the spectra of

differentatoms. Chemistslongago discoveredthe greatpowerofllendelejeff
5

s

periodic system of elements as a coordinator of their empirical knowledge of

the chemical properties of atoms. As these properties are all, in the last

analysis, related to the energy states of the atoms, we shall expect the

periodic system to play an important part in coordinating the different

atomic spectra. More than that, as Bohr showed, the theory of atomic

structure through its picture ofthe arrangement of electrons in closed shells

provides a clear understanding of how it is that element with similar

properties recur periodically in the list of elements. In this section we shall,

then, consider the empirical data on the gross structure ofthe atomic spectra

in its relation to the chemist s periodic table.

In Fig. i14 are shown the energies of the highest and lowest observed levels

of the principal configurations of the first eighteen elements, plotted up
from the lowest level of the atom, the even configurations on the left and

the odd on the right. This takes us past the initial hydrogen and helium

pair through the second Mendelejefi period of eight. We have included,

in addition to all the low-lying configurations, at least the lowest con

figuration of each observed series. The lowest level of the ion of each

element is indicated by cross-hatching, and configurations of the ion

which may have importance as parents are shown in broken lines.

We see that in normal helium the second electron has gone into a la state

and that the next excited state is very high much higher than the whole

ionization energy of hydrogen. Moreover we see that Is 2s is definitely

lower in energy than Is 2p. This we shall connect with the fact that the 2s

state comes nearer to the nucleus than the 2p. At any rate, the fact of 2s

being lower than 2p in helium leds us to expect that 2s will be the normal

state of lithium. In lithium we see that 2p is considerably higher than 2s;

this points to 2$2 as the normal state of beryllium.* Now the 2s shell is

closed. The fact that in beryllium the 2p energy is considerably less than the

3& leads us to expect boron to have 2p for its lowest configuration.f In the

next six elements the normal configuration is in each ease obtained by
* That He is, and Be is not, a rare gas, although both have closed 4 shells for their ground states,

is connected with the extreme difference in energy necessary to excite one of the elections in this

closed shell.

f For brevity we omit mention of the closed shells already present and speak of 2p when of

course the complete designation is I*8 2* 2p.
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successive addition of a 2p electron to the normal configuration of the pre

ceding atom. At neon the process is brought to a stop by the operation ofthe

Pauli principle, as sis is the maximum number of electrons in any p shell.

As we gofrom boron to neonwe observe that the interval betweenthenormal

configuration and the lowest excited configuration progressively increases.

There is little ground for ambiguity here as to prediction of the order

of the low configurations in the element (Z+l) from a knowledge of the

spectrum of element Z.

Thus we see that the first period of eight is connected with the sequence
ofnormal configurations obtained by successive addition oftwo 2s electrons

followed by six 2p electrons. Looking at the spectrum of neon we see that

2p
5 %s lies below 2j?

5
3p, with the other configurations definitely higher. This

us expect a repetition of the previous development in the next eight

by successive addition of two 3$ electrons followed by six 3p
electrons. This is in fact what happens. The close parallelism of the period
from Li to Xe and from Xa to A is very striking, although our know-

of the second period is far from complete, especially in regard to

phosphorus and sulphur.

What next ? We notice in argon that 4s is lower than 3d!, the departure of

the effective field from the Coulomb form being sufficiently great to upset
the order ofn values as it occurs in hydrogen. Looking back we see that the

inversion occurred at as far back as neon where p5 4s is definitely

below j)
5 3d. Even in nitrogen the known terms of p* 4s are below p* M, but

not so much but that the complete configurations probably overlap. This

inversion has not occurred in boron; but by the time we reach sulphur,

chlorine, and argon it is quite definite. Therefore we expect the next element,

potassium, to have 4a for its lowest configuration.
The eighteen elements from potassium to krypton are shown in Fig. 214 .

Here we have a situation which is quite different from that in the first two

periods. There is a close competition going on between configurations ofthe

type dn $23 dn^ls and dn^ for the distinction of contributing the normal
state of the atom. As aE of these are even configurations their proximity

undoubtedly gives rise to strong interactions so that the assignment of a
definite term to a definite configuration has much less meaning than in the

cases heretofore considered. In scandium, the configurations ds
2

,
d2$ and P

are rather widely separated, but in titanium the configurations d
2 s2 and d3 s

overlap considerably; similarly for succeeding elements. The competition
is especially close in nickel where, although the lowest level is d8 *28^, the

term intervals are such that ds stz!3 is considerably higher than d9 s 3D3

which lies only 205cm-1 above the normal level. Our knowledge of these

spectra, while extensive owing to their great complexity, is by no means
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complete, but generally itmay be said that the configurations d
n s2 and dn+l $

overlap completely so that the question of which configuration gives the

normal state, as far as it has significance, is as much dependent on the

internal interactions in a configuration as on the central field. A striking

property of these atoms is their almost constant ionization energy as con
trasted with the upward trend in the ionization energy during the filling of

a p shell. The lowest levels of the doubly ionized atom are indicated in

parentheses for some of these elements.

Copper is somewhat akin to the alkalis in that its level system is mainly
due to various states occupied by one electron outside the closed $d shell.

But configurations like d9 #2 and cPsp are still in evidence relatively low,
whereas the corresponding jp

5
&amp;lt;s

2 and p^sp are not observed in alkali spectra.
In copper and zinc we note that 4p is definitely below 5s; this leads us to

expect that the 4p shell will be filled in the next six elements. TMs is the

case, although ourknowledge of some of these spectra is quite fragmentary.
We thus arrive at another inert gas, krypton, the eighteenth element after

the last preceding inert gas, argon. In these eighteen elements the 4s, 3d and

4p shells have been built in. TMs is known as the first long period in the

periodic table.

There are many variants of the periodic system employed by chemists: a

fairly common form is reproduced in Table I14 . Let us note how their treat

ment of the first long period differs from that of the short periods and the

relation of this to the facts of spectroscopy. In Groups I and II, potassium
and calcium are clearly alkali and alkaline earth, but from Group III to

Group VII the elements do not have such a close relationship to the ele

ments of the first two periods: the metal, manganese, lias certainly little

in common with the halogens, fluorine and chlorine. That is correlated here

with the fact that a d shell rather than ap shell is being filled. As the d shell

is longer than ap shell, they have to introduce a Group VIII and lump three

elements into it. Then they omit an entryfrom Group and put the remain

ing elements into the second or
4

odd* series of the long period. With these

an a and a p shell are being filled, so we expect them to show more chemical

similarity with elements of the first and second short periods than did the

first part of the long period. TMs is certainly the case for the elements

bromine and krypton at the end, but not for copper and zinc at the

beginning of this group. In the table the rare gases are counted in at the

beginning of new periods, whereas we prefer to count them in at the end:

this is just one example of the kind of arbitrariness present in the empirical

system, wMch has led some to suggest that the elements should be distri

buted on a spiral curve drawn on a cylinder to emphasize the arbitrariness

in the choice of beginning and end of a period.
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It is not necessary to discuss the remainder of the system in such detail.

The second long period builds in the 5# 5 4d, and 5j&amp;gt;
shells, ending with xenon.

This is illustrated in Fig. 3M where the similarities with the first long period

are evident.

With the third long period greater complications set in (Fig. 414). It starts

off like the others with the alkali, caesium, and the alkaline earth, barium,

closing the 6s shell. After this the 65 and 5d electrons start a long-period

competition as before, butnow the 4f states enter the competition. The com

plexity that presents itself is so great that thus far very little progress has

beenmade in disentanglingthe spectra ofthe elements whichhave/electrons

in theirnormal configuration.* These are therareearths the chemists donot

have such an easy time with them either. There are fourteen places, from

cerium (Z = 5B) to lutecium (2=71), where the 4f shell is being filled.

From Hf72 to Pt 78 the filling oftie &d shell, interrupted by the rare earths,

continues. In the process the 6s electrons have been displaced so that they

must come in again at gold (79) and mercury (80) to give elements chemically

resembling copper and zinc, having respectively one and two s electrons

built on just completed d shells. Finally in the elements thallium to radon

the 6p shell is built in. In these spectra, due to large spin-orbit interactions,

there is apronounced tendency tojj coupling. The radioactive metals follow :

almost nothing is known about their energy-level schemes.

For many purposes it is convenient to have a periodic table ofthe elements

which shows the electron configuration of the normal state of the atom-

Table 214 is arranged in this way, and provides a convenient summary of

the main facts which have been discussed in this section.

2. The statistical method of Fermi-Thomas.f

The first method of getting an approximate central field which we shall

consider is that of Fermi and Thomas, who treated the cluster of electrons

around a nucleus by the methods of statistical mechanics as modified to

include the Paul exclusion principle, that is, by the Fermi-Dirac statistics.

In this method the phase space associated with the positional coordinates

and momenta of each electron is divided into elements ofvolume A3 and the

exclusion principle is brought in by the restriction ofthe number ofelectrons

in each cell to two (corresponding to the two possible spin orientations).

ISpis the resultant momentum of an electron, the volume of phase space

corresponding to electrons having less than this resultant momentum and

located in volume dv ofphysical space is fTrp
3 dv. Let us suppose the number

* See the recent iper by IIJBEBTSON, Phys. Rev. 47, 370 (1935).

f FBBIO, Bend. Lincei 6, 602 (1027); 7, 342, 726 (1928); Zelts. fur Pfcys. 48, 73; 49, 550 (192S);

THOMAS, Proc. Camb. Phil. Soc. 23, 542 (1927).
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of electrons in unit Tolume is n. We assume that tke kinetic energy of

electrons at each point is as small as possible consistent with the density

at each point. This means that j? , the maximum value of p at each point,

47TD3

is connected with n through the relation
2-^

==, so that

gives the maximum value of the kinetic energy of the electrons occurring at

a place where the density is n. If9 is the electrostatic potential at the point

in question, counted from zero at infinity, the potential energy of the elec

tron is -9. If
jpg; 2/*&amp;lt;e9 9

the kinetic energy of the electron is insufficient

to permit the escape of that electron to infinity. As this must be the case in

the atom 9 we write
j

2/t

where OQ is a positive constant.^ Since for a neutral atom 9 tends to zero at

infinity we also assume that n = for regions of space where (2) leads to a

negativemaximum kinetic energy. Using (1) and (2) we see that the electron

density at a point is related to the potential o by the equation

n [2^16(9 90)3 op- (3)

Treating the charge distribution as approximately continuous we may
use the Poisson equation of electrostatics, ^ 47r/&amp;gt;,

to obtain the basic

equation of the statistical method:

i_-

JftCTj]*, (4)
*j/fr~

where 1
7
== ?~9o*

This equation has been used for an extension of the statistical method to

molecules! and to metals.J We confine our attention to its application to

the atomic problem. For the atom we need a solution of (4) which is such

that o~&amp;gt; Ze r as r
-&amp;gt;0,

and ro-&amp;gt; as r-&amp;gt;oc 5 and which has spherical symmetry.
It turns out that for the neutral atom we may put op

= 0. Using the polar
coordinate form of the Laplacian and writing

,_^ ^ &quot;88534a

* The introduction of of is due to Grra and PEDEELS, Phys. Rev, 37, 217 (1931).
f HCSD, Zeita. fur Phya. 77, 12 (1932).

J LENSABB-JONES and WOODS, Proc. Roy. Soc. A 120, 727 (1928).
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we find that x(x) satisfies a differential equation free from universal con

stants:

We need a solution of this such, that x= 1 at r= and ^ = at r = oo. Such a

solution has been computed numerically* and is given in Table 314

TABLE 314. The function %(x).

With this approximate potential function Fermi was able to make a

striMng calculation of the number of s
} p s d electrons in the atom as a func

tion of atomic number. At a point where the maximum value ofp is pQ the

actual momentum vectors are equally likely to be anywhere inside the

centred momentum-space sphere of radius p . Hence the number of elec

trons in unit volume for which the component of p perpendicular to the

radius vector has a value between p^ and p^ -f dpA is

if we introduce the orbital angular momentum L=pjr. Hence the whole

number for which L lies between L and L+dL at all places in the shell

between r and r 4- dr is

Replacing p* by its value 2/*ecp and integrating over those values of r for

which the radical has real values, we obtain for the number of electrons for

which L lies between L and L -fdL

LdL.

* A short table was given by Fermi. The values given here are taken from the table calculated

witn the differential analyser by BUSH and GJLLDWELL, Phys. Rev. 38, 1898 (1931).
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We shall suppose in this semi-classical argument that we hare to put
L= (1+ 1) ft and dL^ftm order to find

dr, (7)

where ATj(iJ) is the number of electrons whose orbital angular momentum

quantum number is I in the atom of atomic number Z. Written in this form

the expression has a simple interpretation : h~l times the integral is the value

of the radial quantum number, calculated classically, for an electron of zero

energy and orbital angular momentum (l + %)fi moving in a central field of

potential energy,
-

e&amp;lt;?(r).
The factor 2 (21 +1) is the number of electrons in

a closed shell and the other factor is the number of closed shells occurring.
The integral in this expression has to be evaluated numerically. Fermi has

done this: the results are compared with the empirical data in Fig. o14

where the smooth curves give the values of the theoretical N^Z) and the

Fig. 5M . Numbers of s 9p 9 d9 and/ electrons in the normal state as a function of Z,
as given by the statistical-field method.

irregular curves give the empirical values as discussed in the preceding
section. The agreement is extremely good.
Another question which has been studied by the statistical method is that

of the total iordzation energy, that is the energy necessary to remove all of
the electrons from a neutral atom. This was calculated by Milne and Baker.*
The method is to calculate the electrostatic energy ofthe charge distribution.

The total energy is half of this since by the virial theorem the average
kinetic energy is minus half of the average potential energy in a system of

particles interacting by the Coulomb law. The result is that the total energy
of the noimal state of the neutral atom of atomic number Z is

W= 20-83 Z^ electron volte.

An examination ofthe experimental data has been made by Youngf for the

* MEUSE, Proe. Camb. PHI. Soc. 23, 794 (1927);
BAKZB, Ptye. Rev. 36, 630 (1930).

t Toroe, Phya. Rev. 34, 1228 (1929).
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elements lip to neon. He finds good agreement with the exponent of Z but

that the data are better represented by the formula

IF = 15-6 J^ electron volts.

Milne gave the theoretical coefficient the value 17 because of numerical

inaccuracies; this accidentally gave a much better agreement.

3. The Wentzel-BrHlouin-Kramers approximation.*
An important method offinding approximately the eigenvalues and eigen-

fdnctions of one-dimensional Schrodinger equations was developed by
Wentzel, Brillouin, and Kramersf independently. It is of interest because

it exhibits the connection with the older quantization rules of Bohr and
Sommerfeld. Let us first consider motion along a single coordinate under the

potential energy U(x). For convenience we suppose this has but one mini

mum and increases monotonically to the right and left of it.

We enter the wave equation

f +^(E-UW= Q (I)

with the assumption = ef?/s
, (2)

so that 9 has to satisfy o 2
-f 2/z, (U E)= ij&p* . (3)

If fL were zero this would be the same as the Hamilton-Jacobi equation of

classical mechanics for the action function S(x). This suggests writing

Equating successive powers of H to zero in the equation for 9, we find

8 *+2p(U-E) = 0,

apJS ^S*

for the first two approximations. These lead to

Hence in this approximation the wave function is given by

i

where a =

The approximation is evidently not valid where E 17= as $a becomes

infinite there. In this approximation $a^a ~|2/i(J? Z7)|~*; inside the
* A good discussion of this topic iias been given by HIRTREE, Proc. Manchester Lit. and Phil.

Soc. 77, 91 (1933).

t WXNTZKL, Zeits. ffip Phys. 38, 518 (1926);

BEHXOUET, Jour, de Physique, 7, 353 (1926);

KSAMEES, Zeite. ffip Phys. 39, 828 (1926).
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classical range of motion, where E&amp;gt;U, this is equal to the classical pro-

of being between x and x + dx, the latter being taken proportional

to the fraction of the whole period spent in going through this interval.

Xext let us investigate the behaviour near the classical turning points of

the motion, that is near the roots x^ and x2 (x^ &amp;lt; x2) of the equation

E - U(x) = 0. In the neighbourhood of these two points

where x and x.2 are both positive. Writing

g= x\(x-Xi) or a|(a?2 -a?),

the wave equation near either of the turning points assumes the canonical

form f-f^=0. (6)

The solution of this which is finite everywhere is an Airy integral* which

Kramers took in the form

f exp(#+ #)*, (7)
rJf TTJ

where the path C comes from infinity along the ray t=re&quot;
i7r^ and goes to

infinitv along the ray 1= re&quot;^-
3

. The function may be expressed in terms of

Bessel functions of order one-third, so that the numerical tables and func

tional properties given in Watson are applicable :

../&quot;&quot; &amp;gt;

Gr&amp;gt;0)

(8)

(f&amp;lt;0)|

V3

Applying the asymptotic formulas given in Watson (Chapter vn), we find

that for large a,(f)~f*oos(|-frr), (f &amp;gt; 0)

Comparing this with the approximation valid away from the turning points

we see that
aj

(a; -*!))! cos/J

Of /
|*a:s

|
COS

(&quot;~J

adx+

v$ f r
x

\

-J-Jjexpl- \a\dx\.
\cr\*

\ Jx* I

WATSON, Tkwry of Bessd Functions, p. 188.
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These forms will join up smoothly in the region xI &amp;lt;x&amp;lt;x%
with the solution

(4) only if the arguments of the two cosine functions differ by an integral

multiple of IT. This implies that

f
2
J x

or, in terms of the classical momentum at the point x} that

(9)

This is exactly ofthe form ofthe Bohr-Sommerfeld quantization rule except
for the occurrence of (%+ J) in place of n. It thus appears that the use of

quantum numbers increased by J in the old rule gives an approximation to

the energy levels as determined by quantum mechanics. With the energy
level so determined the approximate eigenftmetion (not normalized) is

given by
-^exp

&amp;lt;!\J x:

r das I,

(x~x )

(10)

|

i adx\ .

This completes the discussion for a single rectilinear coordinate where the

boundary conditions require that $ be finite in the range oo&amp;lt;^&amp;lt; 4-00.

For atomic theory we are more interested in the equation for the radial

eigenfonctions, where the coordinate range is to -f oo and the boundary
conditions .5(0) = J2(oo)

= 0. This was treated by Kramers as follows:

The equation is

Near the nucleus U(r) is Ze*]r+ G, so the equation has the form

Ifwe neglect the constant term in the coefficient of R, this equation may be

solved in terms of Bessel functions to give

B(r)~A (12)
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the asymptotic expression for which Is

Let us suppose that we have to take

f /2Za

j V
a2*2

as the argument of the complex exponential in (2). To terms of order r*1 this

becomes _ 2Jfc
2

VSZrja + - -
irk,

VBZr/a

so with this accuracy the approximation in the region of classical motion

becomes
/ r \i T *

_ 2F , J1
JZ~(-1-| Cos V8Z^+ -7=-- TlA-ff L

\2jZa/ L V8Zr/a
r
j

Comparing this with the asymptotic expression for the Bessel function we

see that they will agree if

At the outer bound of the classical motion in r
}
one may join the approxi

mation smoothly by means ofthe o&amp;gt; function as before. Thus Kramers is led

to the conclusion that one should use the classical quantum condition in

the form .

^r = (n,+i)A=(-Z-i)A, (13)

where

That is, one uses half-integral values of the radial phase integral and uses

(|-f- 1)
2 instead of 1(1+ 1) in the term representing the effect of the orbital

angular momentum on the radial motion.

This result is the basis of a method for finding an effective central field

U(r) which was developed before quantum mechanics by Fues and Hartree.*

This early work is characterized by the use of integral quantum numbers.

This made the work easier because for the circular orbits the radial integral

was zero, so their empirical energies gave several points on the curve directly.

The first calculations with the half-quantum numbers demanded by the

new theory were made by Sugiura and Urey.f They worked by a graphical

process. ProkofjewJ made calculations for sodium by a numerical method.

* Fmss, Zeits. fur Phys. 11, 364; 12, 1; 13, 211 (1922); 21, 265 (1924);

HAETEEE, Proc. Camb. Phil. Soc. 21, 625 (1923).

I SUGIUSA and UBEY, KgL Danske Vid. Selskab, Math. fys. 7, No. 13 (1926);

STCICBA, PHI. Mag. 4, 495 (1927).

J PROKOFJZW, Zeits. fur Phys. 48, 255 (1929).
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If we write
-2?=-^, U(p)= ~Q(p)lp*, p=r/a,

the quantum condition is

where the limits of integration bound the range in which the integrand is

real. For largepwe have Q(p) ^=p and for all values Q(p) &amp;gt;p.
Since the /terms

of sodium are essentially hydrogenic, to a good approximation Q(p)p
for p&amp;gt;6-125.

For smaller values Prokofjew assumes Q(p) in the form

ap
2
-f ftp -f y choosing two coefficients in such a way as to join smoothly to

PRQKQFJEW

Q 0-5 1-0 1-5 2-0 2-5 3-0 3-5 40
r/a

Fig. 614. Effective nuclear charge for potential field in sodium.

the analytic expression used for larger p values and the third so as to fit the

empirical energy values to the radial quantum condition. With this form for

Q(p) the integral can be evaluated exactly. Prokofjew gives the following

table as the result for Q(p) determined this way:

Range of p Q(p}

to 0-01 Up
0-01 0-15 -24-4 p

2
-f 11-53 p- 0-00264

0-15 1-00 - 2-84 p
s + 4-46 p-f 0-5275

1-00 1-55 + 1-508 p
2 - 4-236 p 4-4-876

1-55 3*30 0-1196P
2
4- 0-2072p4-l-3I9

3-30 6-74 0-0005p
2 -f 0-9933p+0-0222

6*74 oo p
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In Fig. 614
is plotted the effect-ire nuclear charge for potential

as a function of p for this field as determined by Prokofjew and also for the

Fermi-Thomas potential for an electron in sodium. We see that the latter

does not approach the asymptotic value sufficiently rapidly in this case.

4. Numerical integration of the radial equation.

Given an approximate potential function, the eigenvalues and eigen-

fknctions may be found by a numerical integration of the radial equation.

We shall not attempt a thorough discussion of this matter as it involves

varied questions of technique. A sketch of the method follows.

A trial eigenvalue is chosen; the differential equation to be solved is then

of the form
jy,y(x^ g(^ wtere g(

x)=f(x)y

and/(x) is a known function (D=*djdx). By assuming a power series for y(x)

near the origin one may find the numerical values of the coefficients and

compute a table ofvalues ofy(x) for small values ofx. In terms ofthe back

ward difference operator V the finite difference tables

may be set up for interval h in x. We now try to calculate the next value of

V^y in terms ofquantities either known or almost known. We have D*y= g(x)

so

Since 1 V= e~m we may express the operator D~2V2 in powers of V by
the series

Of order

from which follows

Referring to the above scheme, we see that V2^ involves the known g%
and the unknown ?2

g4 and V4
^5 . These must be estimated from the

trend in the table and a trial value of V2^ calculated. From this we get
Vy4 and y4 which gives us ^ and so permits the extension of the table of

differences ofg by one more row. The computed value ofV2
g% serves to verify

the estimate already made. If they do not agree the computed V2
#4 is used

to get a new value of V^/n and the process repeated. With experience the
first estimate will be right more than half the time and it ought never to be
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necessary to make more than one correction to the estimate of V2
^. In

this way the table is successively extended.

The process is carried out until the behaviour at large values of a: is

discernible. In general the trial value ofthe parameter will not be an eigen

value so the process must be repeated with a different trial. By comparing

the behaviour of the two trial functions one attempts to interpolate or

extrapolate to a considerably improved trial value. No general rules for this

have been given.

5. Normal state of helium.

We wish now to consider another type of approximate method of obtain

ing atomic energy Ievels 3 namely the variation method, and to illustrate its

use with reference to the very exact calculations of the normal state of

helium made by Hylleraas.* The key idea consists in recognizing that the

Schrodinger equation is the differential equation corresponding to a mini

mum problem in the calculus of variations. From the general principles of

Chapter n we know that $Htfr will be greater than the least allowed value of

H for all
ift except the eigen-i/r belonging to this least allowed value. Moreover

it is easy to see that ijtH^ is stationary for ^ in the neighbourhood ofeach of

the eigen-^ s ofH and that the stationary value is equal to the corresponding

allowed value. In a general way it is a consequence of this stationary pro

perty that one can often calculate a fairly accurate value of the allowed

energy from an evaluation of fH$ from a relatively inaccurate 0.

From the standpoint of the calculus of variations the Schrodinger equa

tion is simply the Euler equation which expresses the fact that the normal

ized
i/t
minimizes $H$, Instead of seeking ^ through its Schrodinger equa

tion, we may use the Ritz method.j In this one tries to represent the

unknown function ^ as belonging to a class of functions, say ^(a,6 3 Cj ...)

depending on several parameters a 9 b,c} .... Then one chooses the para

meters in such a way that
$H&amp;lt;j&amp;gt;

is a minimum when
&amp;lt;f&amp;gt;

is normalized. This

implies a set of equations

o, ... (i)

which determine the minimizing values of the parameters. Evidently if the

family &amp;lt;f&amp;gt;(a,
b,c } ...) happens to contain the exact eigenfunction for some set

ofvalues ofthe parameters, the exact energy and eigenfunction will be found

in this way. That would be a lucky accident. Generally the method furnishes

that member of the family which gives the closest fit to the true eigenfunc

tion ^. Moreover the value of
$H&amp;lt;f&amp;gt;

found this way will surely be greater than

* HYLLERAAS, Zelts. fur Phys. 48, 469 (1928); 54, 347 (1929); Norske VId. A&ads. Skrifter,

Mat. KL 1932, No. 6.

f RITZ, Gesammdte Werle, Paris, 1911, p. 192; or Jour, furreiae mid angew. Math. 135, 1 (1907).
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or equal to the least allowed value of H. This one-sided approach of the

successive approximations to the true value is a useful feature of this

method. It gives us a semi-test ofthe theory in comparison with experiment,

since ifwe ever find a value lower than the observed lowest energy level the

theory must be wrong.
Thfe method of dealing approximately with variation problems was

developed for classical problems, especially in the theory of elasticity, and

has proved to be a valuable tool in that field. It was first used in quantum
mechanics by Keilner* to calculate the normal state of helium; the problem

has been later treated with much greater precision by Hyleraas. It is

evident that the success of the method depends principally on a fortunate

choice ofthe family of functions $(a, b, c, ...) on which the approximation is

based. In the work on helium it has been found convenient to use the dis

tances rj ,
r2 3

and rls and the three Euler angles specifying the orientation of

the plane determined by the two electrons and the nucleus as coordinates.

For the normal state, $ does not depend on these angles.

The simplest possible choice of eigenftinction is obtained by normalizing

the product of two hydrogenic Is eigenfonctions (r is in atomic units).

Here tie integrations are simply performed and give, as the lowest energy

level, (Z.-^f atomic units, and the eigenfonction (not normalized)

This gives 1*605 Rydberg units instead of the observed value 1-810 for the

ionization potential of helium. For the ionization potential as a function of

Z we find (in Rydberg units)

H-{1) He (2) Li+(3) Be++(4)
Calculated -0-055 1-695 5-4A5 11-195

Observed 1-810 5-560 11-307

% error 6-4 2-1 1-0

This shows that the simple screened hydrogenic eigenfunction gives quite

good values as Z increases
5 corresponding to the fact that the interaction of

each electron with the nucleus increases as Z2 while the electron interaction

energy increases as Z.

Using atomic units for length, let us write

Then one parameter may be handled at once, in any trial function, namely
the one which merely changes the scale of lengths in the trial function. For
the eneigy of a function $(ks,M3 Jen) we find

* KELLXEB, Zeits. fur Phys. 44, 91 (1927).
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where, if we let 9 = &amp;lt;j&amp;gt;(s, t, u),

/co rs ru

N=\ ds\ du\ dtu(s*-l
Jo Jo Jo

The condition 8Eftk= leads to k= Z//2J/ 5 so

This fixes the value of k in terms of the other parameters and gives us the

minimum value of E with regard to variation of the scale of lengths in
&amp;lt;f&amp;gt;.

For $ Hylleraas assumes

7i,,m=

Odd powers of cannot occur since
&amp;lt;f&amp;gt;

must be symmetric in the two electrons.

The results of such calculations are extremely interesting and show that

quantum mechanics is undoubtedly able to give the correct ionization

potential to within quantities of the order of the neglected spin-relativity

and nuclear kinetic energy terms. In the third approximation Hylleraas

=- 1-80488 RAc,

while in the sixth approximation

(f&amp;gt;(s,

ty u) = e~&(l + 0-0972^+ 0-0097*2- 0-0277

E=- 1-80648 RA.

An eighth approximation led to 1-80749 RJic= 198322 cm-1 for the ionization

potential as compared with an experimental value of 198298 6 cm-1
- It

will be noticed that the theoretical value exceeds the experimental value by

24 em-1
, which appears to contradict our statement that the Ritz method

always gives too high an energy value. The discrepancy is due to the neglect

ofthe finite mass of the helium nucleus and to relativity effects. When these

are included the theoretical value becomes 198307 cm-1
, which is in agree

ment with the experimental value. This is an important accomplishment of

quantum mechanics since it is known that the older quantized-orbit theories

led definitely to the wrong value.

In order to calculate the ionization potentials of the ions iso-electronic

with He
3 Hylleraas* modified the details ofthe use of the Ritz method so as

* HYIXEKAAS, Zeits. fur Pfays. 65, 209 (1930).
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to obtain the ionization potential as a series in Z~~l . The result, in Rydberg
iinitSj neglecting the finite mass of the nucleus and the relativity correction

is given by the formula

J?= Z2- 1-252? + 0-31488 - 0-017522-1 4- CK)0548-2
.

The data for comparison of theory and experiment are given in Table 414
,

from which it is seen that there is agreement within the experimental error

of the known lonization potentials.

TABLE 4M. lomization potentials of two-electron atoms*

6. Excited levels in helium.

The variation method is peculiarly adapted to calculation of the lowest

energy level of a system, for this is the level which corresponds to an
absolute minimion of $H\[t. The next higher level is characterized as the
minimum value f$H$ under the auxiliary condition that

iff
be orthogonal

to the normal state, and the third level is that which makes fHift a minim-pm
under the two auxiliary conditions that ^ be orthogonal to each of the two
states oflower energy. In approximate work these auxiliary conditions make
trouble, since in the absence of exact knowledge of the ^r s for the lower
states al one can do is require orthogonality to the approximately known
lower states. This inaccurately applied auxiliary condition in general intro
duces a large error in the calculations by permitting the trial

e/r
to contain a

component along the true $ ofthe normal state, with a resultant
e

sagging
of the minimum value $H$ below the correct value.

Nevertheless the existence of quantum numbers that are exact permits
the exact fulfilment of the auxiliary conditions in some cases. This is

exemplified by the calculations of Hylleraas and TJndheimf on the la2s*S
level of helium. In so far as He has exact Russell-Saunders coupling this ^
must be an antisymmetric fonetion ofthe position ofthe two electrons. This
condition alone serves to make it exactly orthogonal to the normal state,
which is a symmetrical function of the position coordinates. Using hydro
-

- v- *** W17 (1930), finds that the electron affinity of the hydrogen atom
is roughly 0-6 electron volt (5000 cm&quot;

1
}.

6

f HYLLERAAS and UXBHMM, Zeits. fur Phys. 65, 759 (1930).
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genie elgenfnnctions with. ,2= 2 for the Is state andZl for the 2s state, the

eigenfunction (not normalized) for 2 3$ becomes

$~e& [(& - 2}sinhft- It coshfq, (1)

where s and t are the elliptic coordinates of the preceding section, measured

in atomic units. The value offH^ for this, relative to the normal state ofthe

He ion, is 0-2469 Rhc which is considerably higher than the experimental

value, 0-35048 Rhe. Preserving the requirement of antisymmetry, one

may generalize (1) to

$~e-
k
*[(Gi + C&+ C&amp;gt;

+ CsU8)smhct+ t(Cs-r 0coshc] (2)

and choose the parameters to minimize $H*ft. In this way Hylieraas and

Undheim found 0-35044 Rhc for the energy ofthis level, agreeing with the

experimental value to about 0-01 per cent.

To illustrate the error involved in failing to apply the auxiliary condition

properly, they calculated $Hi(s for the symmetric function analogous to (I)

for the 2 1S level. The value, - 0-3422 Rhc, lies considerably below the

observed 0-29196 because ofthe
4

impurity ofthe normal state
iff
which is

contained in the trial wave function. They tried a more general form

and applied the orthogonality condition by a special device. The minimizing

conditions expressed by 5141 are satisfied by several values of the energy.

Instead oftaMng the least root, they chose the parameters in such a way as

to minimize the next to the least value of the energy. This gave a value

0*28980 Rhc, that is, 0-7 per cent, higher than the observed value, A more

significant way of estimating the accuracy is to note that it gives the

departure from the hydrogenic value 0-25 Rhc to within 5-4 per cent, of

the actual departure from this value.

Orthogonality of the 2P terms relative to the normal state and the 2 S

levels may be accurately obtained by the proper use of the dependence on

the angular coordinates ofthese eigenfuactions. Calculation ofthe 2 3P level

was made in this way by Breit,* by using the hydrogenie functions for Is

and 2p in the proper combination, with the effective nuclear charges Z&
and Z%p as the parameters. The value obtained was - 0-2616 Rhc, the

experimental value being
- 0-2664 Rhc, an error of 1-8 per cent, on the term

value or 29 per cent, on the departure from the hydrogenic value. Eckartf

made the corresponding calculation for the 2 1P term, obtaining -0-245

instead of the observed value - 0-2475. He made calculations with hydxo-

* BRETT, Phys. Rev. 35, 569 (1930); 36, 383 (1930).

f ECKABT, Phys. Bev. 36, 878 (1930).
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genie functions and variable Z for the 2 3$. 2 1P and 2 3P levels in Li II as

well as He I. The results were, in Rydberg units:

Li II He I

Evidently the method could be applied to find the lowest levels in any
series of configurations because of the orthogonality of the trial functions

in the angle variables.

Historically the first helium calculations are contained in a paper by

Heisenberg.* It was in this paper that he laid the foundations of the theory

of atomic spectra by showing the importance of the symmetry of the eigen-

functions. Heisenberg s calculations were confined to the Is nl configura

tions with !=0. He assumed that the Is eigenfunction was almost entirely

confined to smaller values of the radius than the nl eigenfunction, so he

could take for the potential energy function of each electron

r
(r&amp;lt;r )

An electron inside r moves in the full field while one outside r moves in a

screened field of effective nuclear charge, Zl.
If rQ is taken rather larger than a/2 and at the same time smaller than the

values of r for which R(nl) becomes appreciable, one may use as a good

approximation the hydrogenie eigenfunction with full Z for the Is electron

and the corresponding function with nuclear charge (Zl) for the nl

electron. This implies a correction to the energy of

(l*|ff(r) j Is) + (ril\v(r)
- e2/r\nl)

to allow for tbe fact that they do not correspond to U(r) but to purely

Coulomb fields instead. In calculating the first order perturbation one needs

the direct and exchange integrals of the Coulomb interaction as well as the

perturbation energy corresponding to the fact that the true central field is

the field, Ze^/r. This provides the additional terms

(l%Jfe
2
/r12 j l*7iZ) (I$nl\e*jrl2\nl Is)

-
(ls\v(r)[ Is)

-
(nl\v(r)\nl)

with the result that the whole energy becomes independent of the choice of

TQJ to the first approximation. It is

The third and fourth terms are nearly equal and opposite: on account ofthe

spherical symmetry of the Is eigenfunction its field is like that of a charge
*
HEISEJCBEBG, Zeits. fur Pfcys. 39, 499 (1927).
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concentrated at the centre. These two terms fail to compensate exactly

because some of the B(nl) charge distribution penetrates to smaller radii

than some of the Is charge.

The numerical value of the third and fourth terms together (in Rydberg

units) as calculated by Heisenberg is

2p 3j? M
He (2)

- 0-0020 - 0-OW70 6-7 x 1CT5

Li+(3) -0-0098 -0-0032

These values do not give a good approximation to the location, of the mean

of the singlet and triplet terms because we have neglected polarization.

When the outer electron is present its field acts on the inner electron to

distort its wave function and give an induced dipole moment which gives

rise to an altered interaction between the two electrons. This polarization

effect can, in principle, be calculated with the aid of the second order per

turbation theory. The most careful calculations of the polarization effect

are those given by Bethe.*

The separation of the singlet and triplet states is given by calculating the

exchange integral (lsnl\e
z
]T12\nlls). The values given by Heisenberg are

(Rvdberg units):

7. Normal states of first-row atoms.

In this section we shall review the work that has been done on the use of

the variation method for finding the energies of the normal states of the

atoms in the firstrow ofthe periodic table. For the Li iso-electronic sequence

the most complete work is that of Wilson,f He works with an antisymmetric

combination of one-electron functions as introduced in 366. For the radial

functions he uses the forms

so that the trial function contains four variable parameters, $, 17,
and oc.

The minimizing with regard to the scale factor | can be carried out directly

since here plays the same role as k in 514 . Because of the complicated way

in which a, r)
and appear in the expression for fH$ it was not possible to

solve analytically for the best values of the parameters so a grapMcal-

numerical method was used.

* BETHE, Handbnch der Physik 24/1, 2d ed., 339 (1933),

f WILSON, J. Chem. Pkys. 1, 210 (1933).
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To compare with earlier work by Eckart and by Guiflemin and Zener* it

should be noted that Eckart s M(2s) is obtained from Wilson s by the special

ization. =
7|
= a, so lie has just two parameters to vary, while Guillemin

and Zener s is equivalent to writing =
ij

in Wilson s, leaving them with

three parameters to vary. Comparing with Hylleraas precise calculations

on helium we note the absence of any dependence of the trial functions on

the mutual electronic distances, r
j ; this would make the numerical work

extremely difficult. The results show that the first term in JR(2$) is much

larger than the second, so Zener and Slaterf have pointed out that good

approximations can be obtained by simply omitting the second term in

R(2s).

The results of all such calculations as summarized by Wilson are given in

Table 514 where the energies are expressed in atomic units (twice the Ryd-

berg unit). The calculatedvalues ofthe ionization potential are the difference

between the calculated normal state of the three-electron problem and that

of the corresponding two-electron problem.

TABLE 514. En&gies of the Li iso-electronic sequence*

The S(ls) functions used in all this work are hydrogenic in character

except for the variable scale factor. The R(%s) functions as used in the varia

tion problem are not directly comparable as they stand, since they are not

*
ECILLRT, Pnys. Rer. 36, 878 (1930);
GuTLLTwra- and ZESTER, Zeits. fur Pkys. 61, 199 (1930).

f ZIHEB, Phys. Rev. 86* 51 (1930);

SLATES, ibid. 38, 57 (1930).
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orthogonal to the R(ls) functions and therefore cannot be regarded as

belonging to the same effective central field. One can correct this by con

sidering JJ(2s) = E(2s) + ft M(ls) as the proper 2s radial function, choosing

/? so that B(2s) is orthogonal to J?(ls). This does not alter the value of the

T in determinant form, since this change in R(2a) corresponds to adding to

one row of the determinant a constant multiple of another row.

0-36

Fig. 71*. Comparison of different approximations to R*(2s) for Li I.

A, Wilson; B GuiHemin-Zener; C, Slater; D, hydrogen-like.

The four different R(2s) functions obtained, by the fonr processes are

compared by Wilson in Fig. 7143 where E 2
(2s) is plotted after the E(2s) has

been made orthogonal to the E(ls). It will be noticed that this process has

introduced a node into Slater s form for B(2s) although it was node-less in

the original form. The figure shows a striking similarity ofthe R(2s) for the

three forms which gave best agreement with experiment.

Zener (loc. cit.) has applied the variation method to the normal states of

the other atoms in the first row from Be to F.
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8. Hartree s self-consistent fields.

The different applications of the variation method, that of seeking the

^f
s which make $H\f*stationary for normalized $,may be classified according

to the type of trial function admitted for 0. In the Eitz method a trial

function depending on several parameters is used. This makes the value of

$Htfi depend on these parameters and the stationary values are sought by

ordinary calculus methods. At the other extreme we have the case in which

the variation of$ is wholly unrestricted; then the Euler variation equation

is just the Schrodinger equation ofthe problem. In between these extremes

we may admit trial functions of special forms and determine their detailed

character by the variation principle. The most useful of these is a method

devised by Hartree* on physical considerations ; recognition ofits connection

with the variation principle is due to Slater and to Fock.f

Although we know from Chapter vi that $ must be antisymmetric in all

the electrons, let us neglect that requirement for simplicity and write for the

# belonging to the complete set A the simple form (2
6
4)

instead ofthe properly antisymmetrized function (3
6
6). Let us suppose each

of the w s normalized, although as yet they are not specified to be solutions

of a particular central-field problem as they were in I 6 and 26
. If we use

the approximate Hamiltonian 1 6 1 ? neglecting spin-orbit interaction, the

value of JrHJt is
* N

E
i&amp;gt;j**i

the calculation of the matrix components being exactly as in 66 and 76

only simpler because there are no permutations and hence no exchange

integrals. The dependence of E on any particular factor of #, say ^(a*), is

shown more explicitly by writing

f r

J J

^ e2K S u

+ terms independent of %(#*). (
I

)

This dependence on u^al) is exactly of the form of the dependence for a

one-electron problem in which the electron having the quantum numbers

a1 moves in an effective field for which the potential energy function is

OK) /%2
- S

This is true for each ofthe u s, since they occur symmetrically in
*/f.

Hence if

* HAETBEE, Proc. Camb. Phil. Soc. 24, 89 (1028).

f SLATER, Phys. Rev. 35, 210 (1930);

FOCK, Zeits. fur Phys. 61, 126 (1930).
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we make E stationary by varying each, u^a
1

) independently, each must

satisfy a one-electron Schrodinger equation in which the effective field is

that of the nucleus plus the classical potential energy field due to the other

electrons calculated according to their quantum-mechanical probability
distributions.

In this way the variation principle leads us to a set of simultaneous

equations for the -w s. But they are very difficult, being non-linear and

integro-differential through the appearance of u(a^) u(a?) under the integral

sign in (2). Hartree s procedure is to solve this system of equations by
numerical integration using a successive approximation process.

Physically the set of equations appears to be very reasonable. Each

electron actually does move in a field that is due to the fixed nucleus and to

the action of the other electrons. It was by such an argument that Hartree

set up his equations rather than by way of the variation principle. This

field, or set of fields, Hartree calls sdf-consistent in the sense that their own

eigenfunctions are consistent with the potential field from which they are

determined. The method is evidently applicable in principle to the calcula

tion of other problems where several electrons are involved. For example,

Brillouin* has developed it for use in the theory of metals.

Generally the potential in (2) due to the other electrons will not be

spherically symmetric owing to a departure from spherical symmetry of

the charge distribution S(a?
&quot;)^(a

J
&quot;).

To consider such departures from

spherical symmetry in the atomic problem would be very difficult and

probably would not correspond to an improvement in the final result. For

that reason Hartree does not use the actual non-spherically-symmetric

potential field defined by (2) but the result of averaging this field over all

directions. This results in each electron s moving in an effective central field.

To keep this symmetrizing process within the form of a variation problem

we may assume for each ufa*) that it is ofthe form ofthe wave function of a

central-field problem, i

^(aO =-J2(^S(Z mf), (3)
T

where S(Z%ftf)
=

(Z%f)&amp;lt;I&amp;gt;(mf)
is the normalized spherical harmonic appro

priate to the set of quantum numbers a1
*. This means in the variation pro

blem that only the radial function -B/r is subject to variation. In {! )
the

integral representing the interaction ofthe electrons with quantum numbers

of and o? is now of the form

J(a\ of)
=

f ftij(a*)u^) Ufa?) %(aO dvfa ,

JJ %
* BRILLOUEST, Jour, de Physique, 3, 373 (1932),

23-2
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whose evaluation we have considered in 86 . There we have seen that

J(a\ of) =S a*(Vml V m/) F*(nfl* 9 nW),
k

where the a s are the coefficients in Table 26 and the F B are the radial

integrals defined in S6loa. From this expression it is clear that the effective

central field for the electron with quantum numbers a1 becomes

fa* c=M) feV1

F(a&amp;lt;, r) - -f S S a*(Fml Vm\) -^ 3*(n?V) dr,. (4)
7&quot;* j k J

?&quot;&amp;gt;

This is a central field, to be sure, but its value depends on the m
t
of the

electron in question. This is an undesirable feature since we have to use the

various complete sets A belonging to a configuration to calculate the details

of the level structure of that configuration, as in Chapter vn and later

chapters* As that structure involves integrals of the type Fk
anyway, it is

not likely that we gain much in accuracy by dealing with different central

fields for each m
l
value. For any fixed value of Vw$ 9 the a s of Table 26 have

the property that the average over m] vanishes for k ^ and is equal to

unity for &= 0. Therefore ifwe use for each value ofm\ not the field given by
(4) but the value on averaging over the values ofm\^ we have the same result

as ifwe had taken the non-central field (2) and averaged it over all directions

ofr
t , that is, ^ 2

(&amp;gt; f fi
2

F(a*,fi)-- +S \XWV)dr,.Ti 1 J T
&amp;gt;

3

This is the field with which the Hartree method actually works.

By this operation of introducing central symmetry, the system of equa
tions becomes a system of ordinary integro-differential equations for the N
radial functions, S(af) 9 instead of a system ofN partial integro-differential

equations , each in three independent variables for the N functions, ^(a
4
&quot;).

Let us next see what value this method gives for the energy of the atom.
The characteristic value e(af) of the equation for the iih electron is not the
work necessary to remove it to infinity with no kinetic energy, for in the

actual process of removal its contribution to the effective field in which the
others move is removed which in turn alters the characteristic values of all

the other electrons. Nevertheless it turns out empirically, as we shall see,

that these characteristic values for the deep-lying electrons do provide good
approximations to the X-ray term values, so it must be that the correction

terms are quite small.

The value of E from (I) is given now by using our results for the self-

consistent wave functions. It is evident that we shall have

JS^S *(*)- S (a*af|e*/r|a
f

a&amp;gt;), (5)



8M HABTHEE S SELE-CONSISTE^T FIELDS 357

since the interaction of each other electron with, the ith electron is counted

once in the equations by which each e(a*) is determined. On summing over

i in the first terra therefore the interaction of the electrons is counted twice

whereas in (1) it should be counted but once, so the interaction energy has

to be subtracted from Se(a*) to allow for this.* Suppose we compare this

with the energy E for theN 1-electron problem in which the electron a* is

removed: =

where, however, the values of the terms occurring are calculated from the

altered self-consistent field (indicated by ). The increase in energy for

removal of this electron is

(W - jB)
= -

(oJ)+ If [ V) - (0]+ V o?|eVr&amp;lt;,|a* of)

which exhibits the terms responsible for the difference between (af) and the

ionization energy of the iih electron. Roughly, the removal from the equa
tion for each other electron of the positive potential due to the ith electron

will make each
r

(af) &amp;lt; (a
?
*) 5 so the first sum is negative. In so far as we can

calculate
r

(d) *(a?) by taking the average over the state u(a
j
) ofthe change

in potential energy without allowing for the change in u(a?) itself, the term
f

(a?) (a
7
*)
= (aW|e

2
/r^j^W) so that the first two sums cancel each other

approximately. In this same approximation the third sum vanishes, for its

whole value arises from the changes in the functions u(a?) and u(a
k
). This

shows us roughly why the quantity (a
{
)
is equal to the energy ofremoval of

_the fr
th electron^

Before proceeding to discussion of the numerical results of the Hartree

method we observe that each electron^ field depends on the particular

configuration being considered. As a consequence the $ s obtained for the

different configurations are not orthogonal and so cannot be made the basis

for a calculation in which configuration interaction is taken into account by
the perturbation theory. On the other hand the various complete sets

belonging to the same configuration do have orthogonal eigenfunctions

since their orthogonality depends simply on the spherical harmonics and

the spin functions. Therefore we can use the radial functions found by the

self-consistent field method to calculate the term structure of any one con

figuration by the methods developed in previous chapters on the basis of

a more strict central-field approximation as set up in Chapter vi.

* CAUOT, Proc. Camb. PhiL Soc. 24, 89, 111, 426 (1928); 25, 225, 310 (1929).
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9. Survey of consistent-field results.

In this section we shall give an account of the numerical results which

have been obtained by the application of Hartree s method to particular

atoms. The computing labour involved for accurate results is considerable

but the results so far obtained indicate that the method is an excellent one

for obtaining good radial functions for a first approximation to the atomic

structure problem and as the starting point for more exact calculations.

Therefore a number of workers are now engaged in a programme of these

calculations, the chief activity being that of Hartree and his students at

Manchester. He is constructing a differential analyser of the Bush* type
which will be largely employed on this work and will soon add considerably
to our knowledge of this type of atomic wave function. Owing to the

rapidity with which these calculations are being made this section of our

book will probably be out of date soon after publication, so the reader who
wants to keep abreast of the field will need to follow the current literature.

According to a summary prepared by Hartree for the summer spectro-

scopic conference at the Massachusetts Institute of Technology in 1933, the

work may be divided into two classes according to the standard of accuracy
withwhich the self-consistency condition is fulfilled. In classA themaximum
error is two or three units in the fourth decimal place. Class B includes

calculations of a decidedly lower standard of accuracy. Of class A the

following were complete at that time:

Oxygen I, H, III, IV HABTBEE and BLACK, Proc. Boy. Soc. A139, 311 (1933).
Xeon I McDouGAii, unpublished.
Sodium. II McDouGALL, unpublished.
Copper II and chlorine negative ion HABTBEE, Proc. Roy. Soc. A141, 282 (1933).
Potassium II and caesium II HABTBEE, ibid. A143, 506 (1934).
Silicon V McDouGALL, ibid. A138, 550 (1932).

In addition to these he reported that various persons associated with Mm
were at work on Be, A1IV, A, and Ebll and that he would shortly under
take the negative fluorine ion and Calll.

In class B the following were complete:
Helium I (and two-electron ions) CALDWELL (Mass. Tech.) and unpublished work by Hartree.
Lithium I HABGBEAVES, Proc, Camb. PML Soc. 25, 75 (1928).
Be II and Be I, also B III HABTBEE, unpublished.
Nel, 3? I, and fluorine negative ion BBOWIST, Phys. Bey. 44, 214 (1933).
Boron I BBOTO, BABTLETT, and Dusra, ibid. 44, 296 (1933).

and in progress were carbon by Torrance (Princeton)!, silicon by Lindsay
(Brown), and titaniumV, silver II, and mercury III by Hartree.J

It would take too much space to make a full presentation of all details.

Therefore we shall tell only of the programme of Hartree, in collaboration

*
BFSH, J. Franklin Inst. 212, 447 (1931).

f Xow completed: TOBBASTCE, Phys. Eev. 46, 388 (1934).
J For mercury see HABTBEE, Phys. Rev. 46, 738 (1934).
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with Comrie and Sadler, and the work of Hartree and Black on oxygen, as

representing some of the most interesting possibilities of the work.* After

standardizing the computing method, Hartree arranged with Comrie and

Sadler to carry out the detailed computations. The procedure, as Hartreef

explains, was as follows:

&quot;From the earlier work, I make revised estimates of the contributions to

the field from the various electron groups, and the computing work carried

out professionally is concerned with the calculation ofwave functions in the

field so constructed, regarded as given, and ofcharge distributions from these

wave functions. For reference I will call these calculations the standard

calculations. Unless estimates of the contributions to the field have been

unusually fortunate, the results of these standard calculations are not yet

near enough to the self-consistent field to be quite satisfactory, but they

should be near enough for the effect of any variation of the estimates to be

treated as a first order variation from the results ofthe standard calculations.

&quot;A further revision ofthe estimate is made ifnecessary and the variations

in the wave functions, etc. due to the variations in the estimates from those

used in the standard calculations are calculated, and the variations of wave

functions, etc. added to the results of the standard calculations; the varia

tions are so small that this variation calculation is very much shorter and

easier than the main calculation. If necessary, further revisions of the

estimates are made and corresponding variations from the results of the

standard calculations are worked out, until a thoroughly satisfactory

approximation to the self-consistent field is obtained.&quot;

We now turn to the results for 01&quot; and On*. If R(nl) is the normalized

radial function of the self-consistent field, then the total charge due to an

electron in this state lying within r is given by

this being a special case of a more general set of radial functions

Zk(n^n^;r)^r-
k P* i*S(nl*)R(nW)dri,

which arise in other parts of the work. The effective nuclear charge for field

strength (which we called Z
f
in 913) is then, at radius r,

the sum being over the nl values of the configuration under consideration.

The quantity [1
- ZQ(nl, nl ; r)] is the contribution to Z at radius r from unit

* For an extended discussion of the calculation of the terns of the ^^..^S^
Si IV starting from the Hartree field for Si V, see MoDoraAi*, Proc. Koy. 8oa A138, 5oO (1932).

f HABTBEE, Proc. Eoy. Soc. A141, 282 (1933).

J Haxtree s notation for this ftmction is
fc(V, nl \r).
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charge on the nucleus as screened by an electron in an nl state.
&quot;

It is in

terms of these contributions to Z that work on the self-consistent field is

usually done, and the extent of the agreement between estimated and

calculated contributions usually expressed.&quot;

In the standard calculations the contributions to Z were evaluated to

three decimals with the last uncertain by one or two units. The standard of

self-consistency was such that the difference between the estimated and

calculated contributions to Z for each whole group of electrons of the same

value did not exceed 0-02 at any radius. Hartree says:

&quot;The contributions to Z may be called
*

stable
5

in the sense that if the

estimated contributions from any group is increased over a range of r, the

effect of this is to decrease the calculated contribution from this group (and

from others also); for an increase of Z means that the attractive field on an

electron towards the nucleus is increased, the wave functions of electrons

in the field become more compact, and the proportion of the electron dis

tribution lying inside any given radius is increased

Fig. 8 14
. Illustrating

4

over-stability in calculation of Hartree field for Cu II. Full line
shows change of estimated contribution to Z; broken curve shows the consequent
change in the calculated contribution to Z.

&quot;For all but the groups of the outermost shell, it is usually if not always
the case that the change in the calculated contributions is smaller than the

change in the estimated contributions. If this were so for all groups, an
iterative proems, taking the calculated contributions from one approxima
tion as the estimates for the next, would give a series of calculations with

results converging to those for the self-consistent field; though this process
would be unnecessarily lengthy, as with experience It is usually possible to

make revised estimates better than those obtained by simply taking the

calculated contributions of the previous approximation. But for the groups
of the outer shel!

3 and particularly the most loosely bound group, there

sometimes occurs a phenomenon which may be termed over-stability, in

which a change of estimated contribution to Z causes a change in the

calculated contribution larger than the change in the estimate. When a

group is over-stable in this sense, an iterative process would not converge,

but, for small variations, would oscillate and diverge, and it is then quite

necessary to choose, as revised estimates of contributions to Z, values
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better than the calculated contribu

tions of the previous approximation;

it is also unusually difficult to make

satisfactory estimates and adjustments
to them, so the process of approxima
tion to the self-consistent field is most

troublesome in such cases.&quot;

An example (Fig.$
M

) of this kind of

over-stability is given in the calcula

tions for the 3d 10
group in Cull. The

tables of the radial functions obtained

are given in full in Hartree s paper. To

exemplify the point discussed in the

preceding section that the individual

electroniceigenvalues, (a
i

) , agreefairly
20

well with the X-ray terms, Hartree

gives this table:

From the radial functions the total

charge distribution in electrons per

atomic unit of the radius can be calcu

lated. Using the results for KII and

RbU, the alkali ions preceding and

following Cull in the periodic system,

an interesting comparison is made in

Fig. 914 from Hartree s paper. This

shows clearly that the charge distribu

tion for Cull is much more compact
than for either of the alkali ions, a fact

which is reflected in the interatomic

distances in the crystal lattices of the

three metals:

Half interatomic distance

40

Rbll

KH
Cull
RbH

2-309

1-275

2-43

Fig. 914 . Charge distributions in KII,
Cull, and Bbll as obtained by the
Hartree method.
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Comparison of these rallies with the charge distribution curves shows that

in each case half the interatomic distance is just a little greater than the

abscissa of the last inflection point in the total charge distribution curve.

10. Seli-consistent fields for oxygen.

While most of the calculations on self-consistent fields are for atoms or

ions in which all the electrons are in closed shells, this is not the case in

oxygen for which an interesting study has been made by Hartree and

Black.* This affords a more severe test of the method than closed shell

structures in which there is no approximation involved in averaging the

over all directions in space. The results obtained for the total charge

O I

O II

_... o ra

O IV

Fig. 101S . Charge distributions in O I, O IE, O HI, and IV, as obtained

by the Hartree method.

density distribution are shown in Fig. 1014 which indicates clearly the

increasing compactness of the atom as the degree of ionization is increased.

This closing-in is mostly due to the change in the 2p radial function as is

brought out nicely in Fig. 11M which shows the radial charge distribution

of the 2p electron for several stages of ionization. The curves are not

accurately repiesentable as a single function plotted to different scales of

abscissas, howevers which is the approximation implied when the wave

functions are treated as hydrogenic with appropriate screening constants.

In using these radial functions to calculate the energy levels ofthe normal

configurations ofthe oxygen ions, the quantity YIPF is evaluated, whereY
is the properly antisymmetrized combination ofthe one-electron functions,

as in 3S6. This integral can be evaluated for each state of the zero-order

* HJLETSKB aad BI^CK, Pfroe. Roy. Soc. A139, 311 (1933).
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Approximation in terms of the F and G integrals as in Chapter vi and then

these may be used as in Chapter vn to find the energies of the Russell-

Saunders terms. The present calculation goes beyond that of Chapter vn,

for now we have the radial functions and so can get approximate theoretical

values of these integrals instead of treating them as adjustable parameters.
There are two points to be noted in extension of the developments of

Chapter vi:

First, the results of Chapter vr, especially of 6s and 76
, depend essentially

on the fact that the one-electron eigenfunctions, w(& ), are orthogonal. Ifthe

functions are not orthogonal, analogous results can be developed but they
are much more complicated. The self-consistent functions are orthogonal

01
Oil
o in

o rv

r

Fig. 1 I14 . Change in E2
(2p) with increasing ionization in O I, O II, O HI, and O IV.

with respect to 19 ms ,
and m

l
because the spherical harmonic and spin

factors have been retained, but they are not orthogonal with regard to n
since different central fields are used for R(nl) and R(n l). This is most simply
remedied by using for R(nL) and R(n

f

l) not the fonctions given directly by
the Hartree method but linear combinations of them that are orthogonal.

This does not affect the value ofT because it amounts to performing the

same linear transformation on all the functions in the same rows or columns

of a determinant. (Compare 714
.) We pause to note that the fact that this

may be done in a large variety of ways without affecting the result shows

that the exact distribution ofthe charge density among different values ofn,

for the same I, is without significance. Thus for the Is and 2# electrons any
two orthogonal functions for which J22( Is) -I- H?(2s) is the same function of r

as is given by the Hartree field will do equally well. In the actual numerical
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work it is found convenient to take the foEowing combinations as the

orthogonal functions (denoted by ),

-
(
I - $2

)-i[I?(24
-
SR(ls)],

where S= I

*

R(ls) R(2a) dr.

Jo

Second, in the Hartree method the radial functions are not, as in Chapter

vi, eigenfonctions of the same central-field problem. As a consequence the

calculation of the quantities

becomes an actual calculation, whereas before we could replace

at once by &amp;lt;((/)
the u(a?) were characteristic functions of this central-

field problem. This makes necessary a fair amount of additional computing.
The results of the calculations are very good, with regard to both the

absolute values of the terms and the inter-term separations. Measuring each

term down from the normal level ofthe ion with one less electron, the values

in atomic units are:

o in 2/ sp

0fl 2

01 2p* /&amp;gt;

The agreement here is as good as can be expected. On the standard first

approximation the interval ratio (
lD^S)j^P^D) should be 1-5 while the

observed ratio is only I- 14 in 1 and III (cf. 57
), so evidently large per

turbations of the second order are important here.



CHAPTER XV

CONFIGURATION INTERACTION

Hitherto we have neglected matrix components of the electrostatic and

spin-orbit interactions which connect different configurationswhen applying

the perturbation theory. Now we have to considerwhat properties ofatomic

spectra are distinctively associated with these matrix components. So long

as the inter-configuration components are neglected, the resulting eigen-

functions are precisely associated with definite configurations; this has been

the standpoint of the preceding chapters. If they are no longer neglected,

their effectmay be treated as a perturbation which causes interacting energy

levels to be pushed apart and results inan intermingling ofcharacter through

linear combination of the *F s of the interacting levels.

Such interactions are of quite general importance in atomic spectra.

Generally the Y of a level cannot be accurately approximated by a single

definite function of the type 366 or of combinations ofthem belonging to one

configuration such as we have considered exclusively except in the last

chapter. In Chapter xiv we have seen that more general forms were needed

by Hylleraas in order to obtain an accurate calculation of the normal state

of helium. When the variation method is used, all attempts to recognize the

trial functions as the wave functions of a central-field approximation are

given up. The reader may readily satisfy himself, however, that any wave

function depending explicitly on the distance r12 of the two electrons in

helium corresponds to no definite configuration assignment in any central-

field problem. In such calculations of energy levels the central-field ter

minology is more in the background, however, so we must look elsewhere

for really distinctive manifestations of the interaction of configurations.

These are of several kinds. So far very little theoretical work has been

done in the way of definite and detailed calculations of these effects, so this

chapter must be in the nature of an outline sketch.

First,it mayhappen that two particularconfigurationshavealargeelectro

static interaction which is sufficient to make the order of the terms be other

than that given by the ordinary first-order theory of Chapter vn. The best

example is the interaction of sd and p
2
configurations in Mgl, which we

consider in 1.

Second, one term of a configuration may interact with an entire series of

terms with a consequent departure of the series from the simple Rydberg

or Ritz formulas which usually hold for series. This we shaE discuss in 2.

Third, terms lying higher than the ionization potential of an atom are in

a position to interact strongly with states in the continuous spectrum corre-
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spending to unclosed electron orbits of one electron relative to the ion. As a

result suet levels lose their sharpness and acquire something of the cha

racteristics of the continuous spectrum. They give rise to broad fuzzy lines,

their lifetime is altered and their intensity relationships become quite

sensitive to the partial pressure of free electrons in the source. This pheno

menon, which is analogous to predissociation in molecules, has not been

treated very exactly theoretically in any special case. We shall report the

known facts in 3.

Fourth, as already mentioned in I9, the possibility of so-called
c

two-

electron jumps/ that is 3 line emission in which the apparent configuration

change involves two of the id values, is connected with breakdown hi con

figuration assignments. This is discussed in 4.

Finally, in 5 we discuss the intensity anomalies in the alkali spectra

which are associated with spin-orbit interaction between configurations.

1 , Interaction of sd and -p
2 in magnesium.

The general theory of the Russell-Saunders term energies (Chapter vn)

gives
1D 3D for the simple sd configuration and for the interval *D 3D

the ij) -82)= ffl(na, &amp;lt;Z),

where the 6 is defined by 8615b. From their definition the &amp;lt;?*s do not need

to be positive like the JF s, and so at first sight it appears that the singlet

might on occasion He below the triplet on the energy scale. This is actually

the case in the 3^ 3d configuration of Mgl. However, Bacher* noticed

that no reasonable approximation to the radial functions jft(3s) and R(3d)

would make the G integral negative. Using radial functions determined by
a devised by Slater he calculated iJ9 3D~ 4-4000 cm-1

, whereas

the actual experimental value is ~ 1600 cm&quot;
1

.

Thus the *D is actually about 5600 cm&quot;&quot;
1 below its position calculated by

the ordinary method. This Bacher ascribes to interaction with the 3p
2 con

figuration, which gives *D,
3P and IS terms. Since JL2 and S2 commute with

Xe2
Xj* the electrostatic interaction will have no matrix components con

necting terms differing in regard to L and S. Likewise since the electrostatic

interaction commutes with the parity operator& of II6 there will only be

interaction between configurations of like parity. The parity condition is

satisfied, so we expect aninteraction ofp2 and sd, but only ofthe
1D ofp2 with

the 1D ofad. The former is above the latter and as all such interactions make
the levels move apart the situation is right for an explanation ofthe effect.

What is surprising is that the interaction is large enough, for the 1D ofp* is

above the ionization level of Mgl, about 15,000 cm&quot;
1 above the mean of

1D and 3D of the ad configuration.

By setting up the electrostatic interaction in terms ofthe zero-order wave
* BACKER, Ptys. Rev. 43, 264 (1933).
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Junctions and transforming to LS eigenfunctions, by methods explained in

Chapter vm, Bacher finds that the non-diagonal matrix component con-

aecting sd
!D andp2 1D amounts to 13,200 cm&quot;

1
. Their interaction energy is

thus comparable with their unperturbed separation. Calculating the effect

in detail he finds that the interaction pushes the sd 1!) down to 4000 cm&quot;
1

below the triplet, whereas it is only observed 1600 cm-1 below. The conclu

sion is that the configuration interaction is certainly adequate to account

for the inversion. As to the inaccuracy of the final result, perhaps no better

agreementcanbeexpected because ofthe approximate character ofthe radial

functions used.

With such a large interaction, of course, the exact assignment of the 1D
below sd 3D to the configuration sd is quite meaningless. Its true wave

function will be a linear combination of those for sdW and j?
2 3D in which

there is a large component of the latter. Naturally this alteration in the

character ofthe wave function will bring with it other special features ofthe

spectrum, e.g. altered intensities.

Another detailed study of configuration interaction has been made by

Ufford,* who calculated the interaction between the configurations nd
2
ris,

nd3
, 7idn-

f

s2 and nd^n^s. He compares the results with observed data in

Ti II and Zr II, and finds definite evidence that the configuration interaction

has altered the intervals between terms. We have seen in I14 that in all the

elements where a d-shell is being filled, the energy ofbinding ofan s electron

of one higher n value is about the same as that of a d electron, so that there

is a large amount of overlapping of the terms arising from such configura

tions as dx , dx-*s and dx-2 s*. Hence quite generally we may expect large

effects due to configuration interaction here, although as yet the only detailed

calculations we have are those due to Ufford.

2. Perturbed series.

Perhaps the most interesting effect of configuration interaction is that of

producing strong departures from the usual Bydberg-Ritz formulas. Such
*

irregular series have been known for a long time and various explanations

for them have been advanced, but Shenstone and Russell,! following a

suggestion of Langer,J have given very convincing evidence that they are

due to configuration interaction.

The Ritz formula is of the form
R ^

where an is the absolute energy value of the nth term measured from the

series limit, R the Rydberg constant and ft and a are constants, a being small.

* UITOSB, Phys. Rev. 44, 732 (1933).

t SHENSTONE and RUSSELL, Phys. Eev. 39, 415 (1932).

, Ftys. Bev. 35, 649 (1930).
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The effective quantum number n* is defined by the relation given in (1).

It Is convenient to study the behaviour of series by plotting (n* n) against

an . In that case the Rydberg formula (a = 0) is represented by a straight Hne

n*~-m=
$jif parallel to the axis of a, while the Bitz formula is a straight line

with intercept /i on the axis of ordinates and slope a.

Shenstone and Russell find that they can represent many series which

depart from (1) by the formula
8

n*= n^jJi-rX(Jn -i , (2)
O n ^O

the added term in the formula for the effective quantumnumber representing
the effect ofperturbation ofthe series members by a foreign level at the term

value GPO . Such, a formula plotted with n* n against &n represents a hyper
bola with a vertical asymptote at 0&quot;=cj . Before the perturbation of series

levels by an extraneons term was recognized, the extraneous term was often

counted in as a member of the series. As a result the value of n* n would

rather rapidly by a whole unit in going past the value ofthe perturb

ing term &quot;because by counting it in the series all Mgher terms would be

erroneously assigned an n one unit too high.

THs is illustrated in Fig. I15 wMefa.shows the series ofthe 3
D^ levels of Ca I,

Curve (1) shows the n* n values as usually given and curve la shows how
this becomes a hyperbola with asymptotes at a = CTO when the Hglier series

members are given the altered n assignments. To indicate haw accurately the

hyperbolic law is obeyed, curve (2) shows a plot of (n* n)(crn G ) s
which

should not contain the singularity in the curve of (ri*n) 9 against a. In

curve (3) the values of (*-)-j3 (att
cr

)
are plotted to an exaggerated

scale wMch shows in another way how accurately the formula is satisfied.

Related to the perturbation of the SD levels of the series is the perturba
tion in the intervals between the levels of each term. In this series the

intervals increase to a maximum up to the perturbing term and then

rapidly sink to zero as one goes up the series. TMs is due to the fact that

there arethree series,
3D3 ,

3D2 and
3D1? each ofwhich are separatelyperturbed

by the corresponding level of the extraneous term. As the perturbing term
has larger intervals than the series would have if unperturbed, this tends to

increase the other intervals by the differential effect of the perturbation.
Numerous examples ofother perturbed series are given by Shenstone and

Russell. The subject has recently attracted the attention of a number of

spectroscopists,* Pincherle has given a theoretical calculation of the per
turbation ofthe 3s nd aD series in Al II by the

%&amp;gt;

2 1D term and finds order-of-

magnittide agreement. Beutler has extended the work of Shenstone and
* PKCHEBLE, Nnovo dmento ID, 37 (1933);
BETCTLEB* Zeita. fur Phys. 83, 404 {193%

, ibid. 83, 404 (1933);
, Free. Boy. Soc. A142, 286 (19SS).
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Lussell on the perturbed
1P and 3P series in Hg I. Rasmussen. has obtained

ew experimental data on the F series in Ball showing perturbations.

angstroth has made quite a detailed study of perturbations in Bal,

icluding the effect on intensities. Some general theoretical work on the

-ay in which configuration interaction affects line strengths has been done

y Harrison and Johnson.*

The most thorough calculation by quantum-mechanical methods of series

^regularities are those given by Whitelaw and Van Vleck for Alll.f
Mr

-\6M

6060 8000 imOO 12.000

ffn in cm&quot;
1 *-

Fig. 11S. The perturbed *DI series in Gal.

An explanation involving configuration interaction for the occurrence

of inverted doublets in the alkali spectra (
85

) has been proposed by
White and considered in detail by Phillips.J This inversion is shown to be

capable of production by interaction with configurations of extremely high

energy in which one of the electrons of the p6 shell in the core is excited.

3. Auto-ionization.

At all energies higher than the minimum necessary to remove one electron

of an atom to Infinity, the spectrum of allowed energy levels is continuous.

In the one-electron problem the continuous range of positive energies has
* EJLBBISON and JOHSSOX, Phys. Rev. 38, 757 (1931).

f WHITELAW, Phys. Rev. 44, 544 (1933)?
VJLBT VLECK and WHITELAW, ibid. 44, 551 (1933).

} WHITE, Phys. Rev. 40, 316 (1932);
PHILLIPS, ibid. 44, 644 (1033).
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associated with, it a continuum of states for each value ofthe orbital angular

momentum. To label these states the integral total quantum number n of

the discrete states is replaced by the continuous variable E which gives the

limiting value of the kinetic energy of the electron when at large distances

from the nucleus. It may happen that a configuration in whichtwo electrons

are excited, but in which both are in discrete levels of the basic one-electron

problem,, gives rise to energy levels lying above the least ionization energy
of the atom, i.e. in the midst of the continuous spectrum. If there is no

interaction between these states and the configurations involved in the

continuous speetrum 5 these levels do not exhibit any special properties on

account of their location in the continuous spectrum. However, if there is

interaction the T of the quasi-discrete level becomes coupled with the Y s

of the neighbouring levels in the continuum. As a consequence the state

assumes something ofthe character ofthe states ofthe continuous spectrum.
The most important feature of the states of the continuum is that they are

unstable inthe sense that one ofthe electrons moves in an orbit which extends

to infinity. Hence as a result of interaction with them the discrete level

acquires to some extent the property ofspontaneous ionization through one

ofthe electrons moving oS to infinity. This property is called auto-ionization.

The direct spectroscopic effect associated with auto-ionization is a broad

ening of lines whose initial levels are subject to the effect and an alteration

in the intensity of these lines with variation of the concentration of free

electrons in the source. There are two mathematically equivalent ways in

which we may regard the broadening of the lines.

We may say that the discrete level, as a level, remains sharp, but that-

owing to coupling with the continuous spectrum there is a probability per
unit time that the atom will make a radiationless change of state over into

a state ofthe continuum ofequal energy. Owing to this possibility ofleaving
the discrete state rather quickly, the interaction of the atom with the radia

tion field is limited to the production of short wave trains ofmean duration

equal to the mean life of the atom in the discrete level. In the spectroscope
these short wave trains give rise to a broadened line because the Fourier

integral representation ofthe shortwave train involves a band offrequencies
in the neighbourhood of the mean frequency.
Another way ofregarding the matter is to treat the discrete level as com

pletely assimilated into the continuum. At each energyE theT ofthe corre

sponding state in the continuum will contain a certain component of the

eigenfunction ofthe assimilated discrete level. This will be larger the nearer

E is to the original position of the discrete level. Assuming that the assimi

lated discrete level, A, is capable of strong radiative combination with a
lower discrete level, B9 while the ordinary continuum combines weakly or
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not at all with B, it is clear that the intensity of radiation from the con

tinuum in combination with the discrete level B will be dependent mainly on

the amount ofW(A ) contained in the eigenfunction ofthe continuum at each

energy. As this is a maximum at the original location ofthe discrete level JL.

we obtain also by this argument a broadened line at this place.

Auto-ionization isthus a consequence ofthepresence ofmatrix components

of the Hamiltonian connecting a discrete level above the ionization energy

with the states of the continuum at the same energy. If these are not to

vanish, these states must be of the same parity and the same J value; more

over in case of Russell-Saunders coupling they must have the same L and S

values. The perturbation theory for this case requires some modification to

take into account the fact that the interaction is with a continuous spectrum

of states. This has been discussed by WentzeL* Apart from the general

formulation and some qualitative discussion based on the application of the

selection rules, very little has been done so far in the way of attempted

quantitative calculations of the amount of auto-ionization. The theoretical

problem is related to that underlying the theory of predissociation, the

analogous phenomenon in molecules, whereby a molecule may spon

taneously dissociate if put into a quasi-discrete state in which its energy

exceeds the energy necessary for dissociation.

In view of the lack of an accurate detailed theory we shall have to be

content with a review of the main experimental /$ s
?

facts . The firstevidence for auto-ionizationwas noil- K i
*

spectroscopic in character. Augerf showed that i

when a gas in a Wilson cloud chamber absorbs
j

X-rays there are frequently several electron tracks c\j

diverging from the same point. One trail is long and

is interpreted as due to the primary photo-electron

ejected from the K shell by the light quantum.
Another of the trails was found to be of the correct

length to correspond to a kinetic energy of about

K 2L, where K and L are written for the corre

sponding excitation energies of the atom. Other

trails, when present, correspond to electrons of

considerably less energy. The interpretation of the

trail of energy K 2L is clear from the diagramG%t *-*

(Fie. 215). The atom is left in the Jf level byremoval Fig. 215
. Auto-ionization

, r. TT , 11 ^&amp;lt;-

&quot;

i or Auger effect in a A
of an electron from the A shell. Of equal energy ieveL

* WBKTZBL, Zeifcs. fur Phys. 43, 524 (1927); Phys. Zeits. 29, 321 (1928).

f AUGEB, Comptes Rendus, 180, 65 (1925); 182, 773, 1215 (1926); Jour, de Physique 6, 205

(1925); Asm. de Physique 6, 183 (1926). See also LOOKER, Phys. Rev. 40, 484 (1932).

24-2
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with the K level is the configuration W2sQ
Es, where E=K2L. Hence

the atom may pass over into this configuration by the auto-ionization

process, which implies expulsion of an electron with energyK 2L. The

argument is correct in principle, though rather rough, in detail in that

we have supposed the energy of removal of the second 2s electron

also equal to L, but such roughnesses axe acceptable in view of the lack

of precision with which the electron energies are measured. The short

electron trails are supposed to be due to further auto-ionization processes

occurring in the ion in tie I*2 2$ configuration. Such spontaneous ionization

cm&quot;
3

&quot;6
r~ r COMPTON
i HARMS

I
^

^- Theoretical (WENTZEL)

2
Fig. 315 Fraction, p 9 of atoms emitting K radiation as a function of the atomic

nrnnber. The probability of anto-ionization of theK level is given by i p.

processes are by no means rare. An atom in the K level may get out either

by radiation of a K line or by auto-ionization. For light elements the auto-

ionization processes occur much more frequently than the radiation, while

the reverse is true for heavy elements. TMs is shown in Fig. 315 3 where the

ordinate 5 -p, gives the fraction of all atoms in theK level which emitK radia

tion., so that 1 p gives the fraction which pass from the K level by auto-

ionization. The abscissas are the atomic numbers Z* The heavy curve is the

theoretical value as estimated by Wentzel. According to him, the probability

of auto-ionization is nearly independent of Z9 so the whole variation ofp
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with Z Is due to the increase ofthe radiative transition probability, approxi

mately as Z?4.

Recognition of the importance of auto-ionization in atomic spectra in the

optical region is due to Shenstone and to Majorana.* Shenstone discussed

the effect in general and especially in connection with the spectrum ofHg I.

Among other things he showed how it provides an explanation of the ultra-

ionization potentials discovered by Lawrence.f Lawrence found that the

probability ofionization ofHg atoms by impact ofelectrons having energies

close to the ionization potential shows discontinuities of slope as if new

modes of producing ionization are becoming effective with increase in the

voltage. These were interpreted by Shenstone as due to excitation to the

levels which are subject to auto-ionization. This view seems adequate to

explain the observed facts, although at present there is no detailed correla

tion between the values ofthe ultra-ionization potentials andknown spectre-

scopic levels. Shenstone thought the levels responsible for the ultra-

ionization potentials were probably connected with the dg
s*p configuration

in Hg, but later work by BeutlerJ on the far-ultraviolet absorption spectrum

shows that this particular identification cannot be the correct one,

Majorana s paper deals with the 3P terms due to 4p
2
, 5jp

2 and 6p
2 in the

spectra of Zn, Cd and Hg respectively. Here the striking thing is that in all

three cases the 3P and 3PX
levels are known but the 3P2 cannot be found.

The absence of 3P2 is interpreted as due to strong auto-ionization pro

bability, and this raises the problem as to why this level should be so much

more affected than the other levels of the same term. The auto-ionization

arises by interaction with the continua associated with the 4s oci limit in Zn

(correspondingly the 5$ ooZ in Cd and the 6s col in Hg). The 4s Ep continuum

is due to an odd configuration and hence cannot give rise to auto-ionization

of the even 4p
2
configuration, which can only be unstable through inter

action with even parts of the continuum, that is, with 4s Ea and 4s Ed.

These give rise directly to interactions making the
4j&amp;gt;

2 *S and 1D terms sub

ject to auto-ionization. Through partial breakdown of the LS coupling in

the p2
configuration, Y(3P2) acquires a component of Y^-Dg) and tilus

becomes subject to auto-ionization through interaction with 45 Ed. As ZP1 is

the only level in the configuration with J= 1
,
it is not subject to breakdown

ofLS coupling and so escapes auto-ionization. However, 3P should become

mixed with *SQ and hence unstable; the fact is that the interaction here

seems to be much weaker than for 3P2 but Majorana s theoretical discussion

does not show clearly why this should be so.

* SHENSTONE, Phys. Rev. 38, 873 (1931);

MAJORANA, Nnovo Cimento 8, 107 (1931). ,,,*
f LAWBE*CE, Phys. Rev. 28, 947 (1926). See also SMITH, Phys. Rev. 37, 808 (1931).

J BEFTLEB, Zeits. fur Phys. 86, 710 (1933).
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The arc spectrum of copper is known to have a large number of levels

above the ionization limit, some of which give rise to broad lines. Results

of the experiments of Allen* find satisfactory explanation in terms of the

auto-ionization process as was pointed out by Shenstone in a note appended

to Allen s papers. Particularly interesting is the behaviour of lines in multi-

plets arising from a 4D term which lies in the range from 95 to 2164 cm.-1

above the d10ocl ionization limit of Cu. This 4D arises from an even con

figuration. (3d
9
4:s6s) and so can show auto-ionization through interaction

with 2D of dlQ Ed if there is enough breakdown of LS coupling to permit

violation of the selection rule on S. But according to the J selection rule

only the levels 4
D| and 4D^ can show auto-ionization. Therefore in a multi

ple!, lines arising from the 4Dj and 4
D| levels should be sharp while those

originating from the other two levels of the quartet should be broadened.

This is in fact the case. Allen measured the line breadths in a Cu arc running

in air at various pressures up to 80 atmospheres. The breadth of all lines

originating from the quartet levels was found to increase linearly with the

pressure, with the same rate ofincrease for unit pressureincrement. But lines

from 4D and 4D| were found to approach finitewidthatzeropressure whereas

those from the other two levels approached vanishingwidth at zero pressure.
Allen also studied the variation of relative intensity ofthe lines arising in

a 4D term with change in the arc current. The arc in these experiments ran

at atmospheric pressure. It was found that the lines from the unstable levels

of the quartet term were very sensitive to arc current, approaching zero

relative intensity at currents below one ampere and approaching constant

values for currents above twelve amperes. These intensities are relative to

other lines of the spectrum, auxiliary experiments having shown that lines

not subject to auto-ionization retain constant relative intensity with varia

tion of arc current. It seems likely that this effect is due to the fact that the

atoms in the unstable states normally fall apart by auto-ionization before

they can radiate. But ifthere is a high concentration offree electrons around
the ions the inverse process, in which free electrons are caught up by an ion,

comes into play. This could nullify the effect of auto-ionization and build up
the strength of the lines from the unstable levels. This view has not been

subjected to a quantitative discussion.

Auto-ionization effects observed in spectra of the alkaline earths and in

rare-gas spectra, as shown by White, f provide further examples of the

operation of the selection rules.

BeutlerJ has found a long absorption series in Hg vapour corresponding

*
ALLES-, Ebys. Rev. 39, 42, 55 (1932).

f WHITE, Pfcys, Rev. 38, 2016 (1931).

J BETOOK, Zelts. fur Phys. S6, 710 (1933); 87, 19, 176 (1933).
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to the transitions &PQ 6s* :LS
tf+5cP6s*np

LPl . These are aU subject to

broadening by the auto-ionization process and the experiments show that

the amount of the broadening decreases as one goes up the series, showing

that terms near the ionization limit are more unstable than those of similar

character at higher energies.

4. Many-electron, jumps.

As we observed in I9
,
it is a consequence of the fact that the various

moments electric-dipole, electric-quadrupole, magnetic-dipole, etc. are

quantities of type F that the only non-vanishing matrix components con

nect states differing in regard to one individual set of quantum numbers.

Therefore in the approximation in which an energy level is assigned definitely

to one configuration of a central-field problem, radiative transitions occur

only between configurations differing in regard to one of the nl values. Such

transitions are called one-electron jumps. However, in many spectra,

especially in the elements ofthe iron group, lines are observed corresponding

to transitions in which two of the nl values change. These are known as

two-electron jumps.
This is clearly due to the breakdown ofprecise configuration assignments.*

If we know accurately the eigenfonctions Y(-4) and (J5) corresponding to

two levels A and B, the existence of radiative transitions between them

arises from the non-vanishing of the matrix components (xljajJS) con

necting the states ofA with those ofB, where a stands for any type ofelectric

or magnetic moment of the atom. Ifwe try to describe the atom in terms of

a central-field approximation, T(4) and T(B) will appear as expansions in

terms of the eigenfunctions of the states built on that central field. In

general this expansion will involve several different configurations for (-4)

and for Y(jB).

If the configuration interaction is not too great, one configuration in each

expansion will appear with a considerably larger coefficient than the others,

and the experimental spectroscopist will assign the level to that configura

tion. The one-electron jump rule will not then apply to this approximate

label, forA may combine with configurations excluded by this rule in virtue

of the other configurations involved in its eigenfunction. In this way

apparent two- or many-electron jumps may be permitted.

This view appears to be fully adequate for the interpretation of the

apparent two-electron jumps. However, there have not been as yet any

quantitative investigations of this point. What is needed are estimates of

the amount of configuration interaction either from a precise calculation

from the fundamental wave equation, or inferentially from the observed

* CONDON, Phys. Rev. 36, 1121 (1930);

GOUBSMIT and GROPPEB, ibid. 38, 225 (1931).
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perturbations ofthe energy levels. With this one could calculate the relative

transition probabilities forthe different configuration transitions to compare
with measurements of these transition probabilities.

5. Spin-orbit perturbation of doublet intensities*

We have seen in 29 that one of the simplest conclusions from the sum
rules for line strengths is that the two components of the doublet 2

P-&amp;gt;
2$

should have strengths in the ratio 2: 1. This result involves the assumption
that the radial factor of the wave function is the same for the two levels of

the 2P term. The result is generally in agreement with experimental results,

as mentioned in 95
3 but in the case of the higher members of the principal

of Cs the ratio is found to be larger than two. The different experi
mental results are not in complete accord, but agree in indicating that the

ratio for the second member of the principal series, 7 2
P-&amp;gt;6

2S
: is between

3-5 and 4-5 s although the ratio seems to have the normal value for the first

member, 6 2P-^6 2$. This was explained by Fermi* as an effect of the matrix

components of the spin-orbit interaction connecting different terms of the
2P series.

The spin-orbit interaction, from 45
S
is given by (r)L*S. For 2P| the

value of L*S is |S
2
5 while for 2

P| it is I2
. The non-diagonal matrix com

ponents connecting different members of the 2P series are then

o
r) R(np) R(n

r

p)dr,

where (L
m
S)

f
is the appropriate value of L*S. Because of this perturbation,

the first order eigenfunctions are altered and by different amounts for the

two levels of 2P. As the perturbation is diagonal in I, J and M, it is only the
radial factor of the eigenftoaction which is altered. If we write R(np J) for

the factor in 2
Pj in the first approximation, and R (np) for the radial

factor before the spin-orbit interaction is considered, we have

f
30

fW-
Jo

n n

When we calculate the strengths of the two lines 2
Pf~

25 and 2
Pj-&amp;gt;

2$ the
calculations go through as before except that we must use these altered

radial functions in calculating the integral irR(np) R(n $)dr whose square

enters as a factor in the strength of the line. The ratio of the line strengths
*
FEEMI, Zeite. fur Phys. 59, 680 (1929).
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for 2
Pf-&amp;gt;

2$ and 2
Pj--

2$ is thus 2
3
rom the angle and spin factors, multiplied

by the square of the ratio of the two radial integrals,

[J
r R(np |) R(n*a) dr]

:

[j
r E(np |) B(n s)

dr].

This is what makes possible the departure ofthe Hne strength ratio from the

value given by the simpler considerations of 29 .

The numerical values of the integrals involved have been estimated by

Fermi, who finds that in the case of Cs the values are probably large enough

to account for the observed intensity ratio. The quantities

which measure the change in the radial function are small compared with

the energy differences En En*
9 so the actual change in the radial functions

is quite small. For the first member of the principal series the smal change

does not produce an observable effect because its strength is so great relative

to the higher members ofthe series (cf. Tables 75 and 85
)
that the introduction

into it of small components of the radial functions of the higher members

produces no appreciable effect. For the Mgher series members, however, the

situation is reversed. Introduction of a small component of the radial func

tion of the lowest 2P term into their radial functions produces a relatively

large effect because of the fact that the first series member combines so

much more strongly with the normal 2S level.



CHAPTER XVI

THE ZEE1IAN EFFECT
In 105 we have treated the Zeeman effect for one-electron spectra. This
serves as a simple pattern for the present chapter, which is devoted to the
Zeeman effect for the general case.

1. The normal 9 Zeeman effect.

The argument of 105 which leads to 105o is valid for each of the N elec

trons in the atom, so that a magnetic field of strength jg? in the direction of
the s-axis contributes to the Hamiltonian. the term

(1)

with o = eJfY2/Ltc as in 105
6. The whole theory ofthe effect of a magnetic field

on the energy levels of an atom is therefore given by a study of this per
turbation term.

Before developing the theory from this standpoint it will be instructive
to consider a little of the history of the Zeeman effect. Prior to the intro
duction ofthe electron-spin hypothesis in 1925 physicists had attempted to

give a formal description of atomic spectra in terms of a purely orbital
scheme of electronic states, so that the entire angular momentum of the
atom was given by the sum of the L vectors for the individual electrons. In
such a scheme Ls , the sum of the ^-components of the orbital angular
momenta, is a constant of the motion which is quantized to integer valuesMLfi* Likewise the magnetic perturbation energy is given by (1) without
the Sz term. Therefore the magnetic energy is simply o times a constant of
the motion, so the effect on an energy level characterized by the quantum
number L would be to split it into 2L + 1 equally-spaced levels by addition
of the quantity olML to the unperturbed value, where - L ^ML ^ L.
The ordinary dipole radiation involves transitions between states for

which Alf^O, in which case the radiation is linearly polarized with the
electric vector in the plane determined by the z~axis and the direction of
propagation, and AJ/X=1, in which case the radiation is circularly
polarized when viewed along the z-axis. Since, according to the foregoing,aH the energy levels are split by the magnetic field in the same way, the
observed splitting of all lines is the same on this view of the matter. The
transitions for which AJ/ = will all have the same frequency and will
coincide with the unperturbed line. The transitions for which ML^ML +l

* Tim is actually the case for singlet levels (5=0) in KraseH-Saunders coupling.
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:&amp;gt;n emission will all have the same frequency which will be in fact shifted

toward lower frequency from the unperturbed line by an amount O/ZTT see&quot;
1

&amp;gt;r O/STTC cm&quot;
1

. The transitions for whichML-*ML 1 will be shifted toward

bigher frequency by the same amount. For longitudinal observation, that

is, observation in the direction of the magnetic field, the radiatioD is cir-

3ularly polarized: for the high frequency component it is polarized in the

direction of the positive current which in a solenoid would produce the

applied magnetic field, for the low frequency component it is oppositely

polarized.

The conventional way of exhibiting this result, which we shall adopt, is

shown in Fig. I 16 . With longitudinal observation one sees simply the two

components which are circularly polarized in the directions indicated if one

imagines the magnetic field to be up from the paper. Observation in a

direction transverse to the field shows all three components, the undisplaced

one showing linear polarization parallel (77) to the field, the others showing

linear polarization perpendicular (a, for senJcrecJit) to the field.

rfr*t Q Q
Longitudinal I

;A 777* +1 -1

left

fir
Transverse \

gr

Fig. I16 . The normal Zeeman triplet.

The influence of a magnetic field on spectral lines was discovered by

Zeeman in 1896. Soon after, a simple electron theory ofthe effect predicting

the normal triplet was given by Lorentz. Although we have described the

theory of the normal triplet in terms of quantum mechanics, this is by no

means necessary. The same result follows from a consideration ofthe action

of a magnetic field on a vibrating electron moving according to classical

mechanics. By comparison of the observed behaviour of some of the zinc

and cadmium lines with the Lorentz theory, it was found that the displace

ment corresponded to negatively charged particles having the same value

of e}p, as had been found for electrons by deflection of cathode ray beams.

Thus, in the very beginning of modern atomic theory, the Zeeman effect

provided very strong evidence that the emission of light is connected with

the motions of electrons in the atoms.

This agreement between theory and experiment for the lines of zinc and

cadmium gave a great impetus to the infant electron theory. Almost a year

elapsed before further studies ofthe new effect on other lines showed thatthe
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normal Lorentz triplet Is by no means the general behaviour of a spectral

line under the influence of the field. Generally speaking the patterns are

much more complicated, so that it was something of a happy accident that

the first lines studied were those to which the simple Lorentz theory was

applicable. With characteristic love of the simple, physicists fell into the

habit of referring to the triplet pattern as normal*; all other forms of the

effect were caEed &quot;anomalous. This characterization remains in use even

to-day although we are now In possession of a complete theory which gives

a rational account ofall the observed effects. In terms ofthe complete theory
the so-called normal effect is simply a special case in which the effects of

electron spin are absent.

Nevertheless the anomalous
9

effect remained a great puzzle until the

electron-spin hypothesis was introduced and that was a quarter of a

centuiT later. Perhaps the continued use of the adjective anomalous is

appropriate in view ofthe long time during which the general Zeeman effect

resisted the attempts of physicists to understand it. Before leaving this

brief review of the historical setting it may be remarked that the essential

feature of the spin theory is the occurrence of (LZ+ ZS^ in (1) rather than

(Lz -f Ss). That is, that the ratio ofmagnetic moment to angularmomentum is

twice as great for spin angularmomentum as for orbital angularmomentum.
If this were not the case introduction of electron spin would make no alter

ation in the theory ofthe normal triplet as just sketched, for Jz would simply
be written for Lz everywhere with no change in the observable results.

2. The weak-field case: RusseH-Saonders terms.

Most ofthe work on the Zeeman effect applies to spectra in which Russeli-

Saunders coupling holds quite accurately, so it will be convenient to begin
the study with this case. As we have already seen in 105 , special effects arise

Ifthe magnetic field is strong enough to produce energy changes comparable
with the separation of the levels of a term, so it is also convenient at first to

consider the case of weak fields, meaning by this fields whose effects are

small compared with the unperturbed intervals the fields commonly used

are weak in this sense. The name Paschen-Back effect is given to the special
features of the Zeeman effect which arise when the field is not weak.

To find the weak-field perturbation of a Russell-Saunders level charac

terized by SLJ, we must calculate that part of the matrix of HM (1
16

1)

which refers to this level. Since LS+2SS can be written as JZ^-SZ ,
and

since Ss commutes with JS9 this part of the matrix will be diagonal with

respect to if. The diagonal element of Jz for the state SLJM is MH; the

diagonal element of Ss for this state is obtained as a special case ofthe results

given in 103. If we identifyJx with S andJ2 with L9 the diagonal matrix



THE WEAK-FEBIiD CASE: EUSSELL-SATJ^BBRS TERMS 381

merit ofSg is given by a combination of 1032a and 93I i . Altogether we find

: the diagonal element of the perturbation energy the value

(y8LJM\H*\ySLJM) = oKgM, (I)

g were equal to unity, (1) would give the splitting which corresponds to

e normal Lorentz triplet.

We see that the energies of the perturbed states are distributed sym-
3trically around that of the unperturbed level. These states are 2J-f I in

imber, as before, but the scale ofthe splitting differs from thesimple theory
r the factor g. The factor g differs from unity by a term which arises from

e matrix component of Sz . For singlet levels S= and L = J, so the

Lditional term vanishes. In other words, the theory of the normal Lorentz

[plet applies to the Zeeman effect of lines which are combinations of

iglet levels.

These results which we have so easily obtained are in good accord with the

apirical data. The winning of the result (2) as a generalization from the

apirical data was not so easy and represents a great amount of study by

&amp;gt;ectroscopists. This formula expresses implicitly Preston s role* which

ys that all the lines in a spectral series have exactly the same Zeeman

tttern. This is due to the fact that the perturbation energy (1) is indepen-

*nt ofy3 which stands for all quantum numbers other than those explicitly

ritten. More generally, the Zeeman pattern depends only on the S, L, and

of the initial and final levels, provided Russell-Saunders coupling obtains

r the atom in question.

Runge s rulef says that the displacements of the Zeeman components
om the unperturbed line are rational multiples of the Lorentz splitting

27rc. Since the displacement in a line is actually the difference of the dis-

[acements of the initial and final states, and since the gr s are rational

actions, it follows that this rule is contained in our results.

The empirical fact that the Zeeman effect of Russell-Saunders terms is

[ven by the formulas (1) and (2) was worked out by Lande, and g is usually

Qown as the Lande factor. Lande s formulation was based on the modem

srperimental measurements by Back. This work is admirably summarized

i the book by Back and Lande, Zeemaneffekt und Mutiiplettstruktur der

pektrallinien, which, furnishes a good account ofthe subject as it stood just

efore the electron spin and quantum mechanics gave the theoretical basis

&amp;gt;r the experimental material.

In Table I16 are given the g values for the terms of interest. The table

shibits some interesting properties. For J= the formula for g gives g, but

* PBESTOX* Trans. Boy. Soc. Dublin 7S 7 (1899).

f Era&amp;lt;5E, Bays. Zelts. 8, 232 (1907),
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the splitting is ofcourse zero since /= implies 31= 0. As akeady remarked,

singlets give the normal separation. For L = 8 the g factor equals f for all

values of J. A somewhat surprising feature is the fact that certain terms
such as 4

D| ,

5
J\ and

6
(?| have g= Q and so are not split bythe magnetic field ;

others such as BFi ,
7{?1 and

8
G| show negative g values, which means that the

sense of the effect is turned around, as it would be if the electron were a

positive charge and the behaviour normal.
5

I15. Land gfaclorsfor Ru&dl-Saund&rt terms.

In the vector-coupling theory oneregarded 5andL simply as two classical

angularmomenta whose sum isJ. The simplest cases sax&amp;gt;J=L + S,ia which
L and 5 have to be parallel vectors, and J-L- S, in which L and 5 are
anti-parallel. For J= L+ S we find

L+2S
L+S



THE WEAK-FIELD CASE: RUSSELL-SAUNDERS TERMS 383

which Is just the ratio to be expected from the fact that the spin angular

momentum counts double in magnetic

effect. The value for J= L- $ s however,
I &quot;I

tu,i

ioes not correspond to the expectation

based on this simple view, but is S-* P
r

,
_

t
W4

S L-2S+1
~

l

~

Normal

1
J+i~ 3^8+ 1

*

Let us now consider the pattern to be

expected in the transition between two

levels. Using a prime to refer to the

initial and a double prime to refer to the

final Ievel 3 we have

where AJf=M* M . By the selection

rule AJf for the components show

ing parallel polarization, while Alf= I

for those showing perpendicular polar

ization. The pattern is readily seen to be

symmetrical abouta&and is conveniently

characterized by reducing the values of

the factor in brackets to a common de

nominator. Following Back and Lande

the numerical values of the numerator

which correspondtoparallel polarization

are put in parenthesis. Thus one may
readily calculate that the values of the

bracket factor for 2
P| to 2

D| are

(4)8(12)1624
15

which meansthatthereare TTcomponents
at ~^and ff of o/2?rc from the undis-

placed line and o- components at ^5

{f ? and f|. In this notation, the

pattern is independent of which is the

initial and which the final level.

The different Zeeman components are

by no means of equal intensity, as we

I r i !

/-*2

tO)l_

2

1-2

2-2

/ 213

2

GW579U

(0)t:2)3S

{2)4
3

(1)35

3

(t)IFf3

IS

m3) 1517/321

15

/5

Fig. 216 . Zeeman patterns for several

common multiplets. The relative

strengths ofthe componentsofeach

multiplet are indicated by the

lengths of the bars (divided by the

indicated factor in the case of the
weaker satellites).
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stall see in 41S
, Experimentally both the Zeeman pattern and the dis

tribution of intensity provide important aids to the recognition of the

of the energy levels involved in a spectral line. The relative in

tensities are readily indicated graphically by drawing ordinates at the

positions ofthe lines whose lengths are proportional to the intensity. Fig. 216

contains such diagrams, indicates clearly the diversity of the patterns

for some common transitions.

For the Zeeman pattern it is convenient to make a double-entry table

similar to those akeady used for multiplets. The method will be illustrated

by of the pattern for d&4p
4
P|-&amp;gt;d

6 4s 4
Df in Mn as studied by Back.*

Table 216 has a row for each state of the 4
P| level and a column for each state

oftie 4
D^ level. It is thatthe pattern is symmetrical around theposition

of the in zero field. The upper figure in each cell is the theoretical value

ofthe displacement, the lower is that observed by Back, the unit being^ of

the Lorentz splitting.

TABUS 2W.

1 o

. -1*
j

- -31
]

-21; -140
!
-65

|
-15

j

4-35

;
j

-15-12
1

4-34-8

3. Weak fields; getteral case.

In the preceding section we have considered the Mghly important case of
the Zeeman effect for Riissel-Saunders terms. Let us now consider the
nature ofthe effect for an energy level ofany type in the weak-field case. An
energy level of a free atom is always rigorously characterized bv a quantum
number J of resultant angular momentum. The states resulting from the

*
BACK, Zeits. for Phys. 15, 206 (1923).
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pplication of a weak field will be characterized by J and M. The vector S
S resultant spin is of the type considered in 93

S and hence

Therefore the magnetic alteration of the energy level is, in general,

(aLJM\H*\KJM) = clSgM (1)

LS in 216 1 5 where we have, in place of 2162,

0=l + (aJ:S:acJ). (2)

The special result ofthe preceding section is obtained if a = y SL.) In other

s*ords all energy levels are split into 2J -f 1 equally spaced levels sym
metrically distributed around the unperturbed level. The amount of the

splitting isgovernedbyaLande g factor as in Bussell-Satuxderslevels, butnow
Ms factor is given by the general equation (2). The whole theory ofthe weak
leld effect for any term is thus reduced to an evaluation of (a J:$:aJ).

If we express the state *F(ocJM ) in terms of the LS-coupling scheme, we
lave

T(a JJf)= SY(ySL JM)(ySL Jla J).
ySL

Eence the matrix component that we need is

T(a JM) (Jz+ S2) T(a JM)

ySL
Since JZ+SS (

= LZ+2SS) is diagonal with regard to y, S, and L in this

scheme.

The ^(Jg+Si) *? combination occurring after the summation sign is,

however, simply g(SL J) MK, whereas the quantity on the left is ^(a J) 31ft
;

hence we have the result

(ae/) = S g(SLJ)\(ySLJ\xJ)\^ (3)

which expresses the g factor for an arbitrary level in terms of the ordinary

Lande factors of the Russell-Saunders scheme and the transformation

coefficients (ySL J\cnJ).

Ifwe regard a as a variable label running over all the levels which have

a particular J value, and sum (3) over oc, we obtain

Eg(a/)-E g(SLJ), (4)
a ySL

since the coefficient 2 \(ySL J |a J)J
2 which multiplies g(SL J) on the right-

a

hand side ofthe summed equation is equal to unity because the transforma

tion is unitary. The result contained in (4) is known as the g-sum rule.

Actually of course in an atom there are an infinite number of levels

associated with each value of J that occurs at all, so (4) merely becomes an

uninteresting oc= co if applied to all the levels of the atom. Its importance
cs 25
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lies in the fact the summation over y which expresses an actual atomic

state in of states of the RusseH-Saunders scheme Is finite to a good

approximation. Thus in where the states Y(x J) may be assigned

electron configurations, y Si are restricted to those values associated with

the electron configuration as x. In this case (4) tells us. ifwe let a run

only over levels of a given configuration; that although the individual ^r

are by a breakdown of Russeil-Saunders coupling, the sum

ofthe g values for all the levels of a given J in the configuration is the same

as in Russeil-Saunders coupling.

This Is exemplified by the measurements of Paschen on the Zeeman effect

in neon. The configuration 2p
5 3* gives rise to one level with J= 5 two with

J= i one with J= 2, The coupling is as we have far from the

Russeil-Saunders f513
)
in which the levels would be labelled 3P0s

The level of J = 2 Is
3P2 regardless of coupling so we do not need the y-sum

to tell us that the g value for the state of J = 2 should be 7(
SP2 ). This Is

I and Paschen found 1-503 which is good agreement. For the two states

with /=! Paschen found ^ = 1-034 and =1-464 so Sg =2-498, whereas

g\
IP

1 )
-

g\
3
Pi i

=
} s

a good agreement.

Similarly the g be applied to Paschen s values for the levels

in the 2j/
5
3j? configuration. Here J = 1 is represented by four levels, which in

the LS are *Sl9
1P1J

3
Pj and *D^. The corresponding Bussell-

Saunders g values are 3
3 f . 1. f with a sum of 5. The experimental values for

the levels of J = 1 are 1-084, 1-340, 0-999, and 0-699, with sum equal to

5-022 providing a sum-rule check although the individual values are

far the Lande values . For J= &quot;2 there are three states with experimental

g 1-301, 1-229, and 1*137; 3-667. The corresponding states in the

LS scheme are 3P2 9

JD2
3B2 which have a g sum of ^- in good agreement

with experiment.

4. Intensities in the Zeeman pattern: weak fields.

The arising from a given spectral line when the source is in

a field will be said to form a Zeeman pattern. The different com

ponents. as we have J list seen., are connected with the different changes inM .

The relative strengths of the lines are therefore given by application of

formulas 9s ! 1 as noted in 74
? where the necessity arose ofsumming over all

these separate transitions to find the total strengths of the lines of an

unperturbed atom.

In the early work on the Zeeman effect, observation wasmade ofthe longi

tudinal effect (radiation along &f) and of the transverse effect (radiation

emitted In any direction perpendicular to 3ff). This revealed quite generally
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e phenomenon of the circular polarization in longitudinal observation of

e lines which appear polarized perpendicular to $ in transverse observa-

m, and also the absence in longitudinal observation of the lines which are

darized parallel to^ in transverse observation. Since transverse observa-

&amp;gt;n gives the complete pattern and is more convenient experimentally, that

the arrangement which is always used in modern work.

For the Zeeman pattern of any line in which there is no change in /, the

rengths of the components in transverse observation (9 = ?r/2 in 74
4) are

oportional to

\(*JM\P\aSJM)\*=\(*J\Pi* J)\*M* (rr}\

J|(a/Jtf|P|aVJlfTl)j
a=^ ( )

nee the component M-&amp;gt; M+ 1 has equal and opposite displacement
om the original line to that of M-&amp;gt;M 1, it is evident that the pattern of

rengths given by these formulas is symmetrical about the position of the

aperturbed line.

Similarly we may write two more sets of formulas giving the relative

rengths of the components of the Zeeman pattern for J&quot;~/-f 1 transitions

id J-&amp;gt;J 1 transitions in transverse observation. They are

aJ^

(*)}
-- -

(

hese also give patterns that are symmetrical around the undisturbed line.

It should be explicitly emphasized that these formulas are valid in any

)upling scheme, that is, are independent of the nature of the quantum
umbers symbolized by a and a . The positions of the components of the

eeman pattern depend, as we have seen, on the other quantum numbers,

lit the relative strengths do not.

These formulas were first obtained empirically by Ornstein and Burger*
id later derived in terms of the correspondence principle by Kroiiig and

oudsmit, and Honl.f
As an example of the experimental test of these formulas we give some

Leasurements by van GeelJ on a plate, taken by Back, which gave good
eeman patterns for a 8

$-&amp;gt;s
8
Pf (A4852) and a 8S^z 8

P^ (A4752) in MnL
he theoretical pattern for A4852 is given in Fig. 316 . Van Geel used the

ieoretical values of the intensities of the perpendicular components,
* CtosTEiN and BUBGER, Zeits. fur Pfcys. 29, 241 (1924).

f KEOOTG and GOUDSMTT, Xaturwiss. 13, 90 (1925); Zeits. fur Pfays. 31, 885 (1925);

HONL, Zeita. fiir Phys. 31, 340 (1925).

t VAX GEEL, Zeits. fur Phys. 33, 826 (1925).

25-2
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together with the observed blackening ofthe plate for these lines, as a means
of finding the blackening curve ofthe plate. Using this blackening curve he

found as the experimental values of the relative intensities of the parallel

components 41 .

36: 27 .5 .

15&amp;gt;

whereas the theoretical values are

40:36:28:16.

As the line A4752 was on the same plate, the same calibration was applicable

to this. The relative intensities of IT- and or-components, independently, were:

Observed
Theorv

7r-components

57:46:27
54:45:25

or-components

70:56:37:22:12:?

73:52:35:21:10:3

These are evidently excellent agreements. The paper of van Geel includes

several more examples of this sort, all of which agree well with theory.

3 s a a z$ 38

Fig, 3 2
. Theoretical relative intensities in the 85r -&amp;gt;

8Ps Zeeman pattern.

5. The Paschen-Back effect.

As already mentioned, the departure from the above theory of weak-field
Zeeman effect which occurs with a magnetic field strong enough to produce

splitting comparable with the interval between levels of a term is called

the Paschen-Back effect. The theory has already been presented for one-

electron spectra in Id5
. Now we may consider the effect in general.

The magnetic perturbation H* of 1161 is evidently diagonal in any
scheme of states in which ML and MB appear as quantum numbers, the

value of the diagonal matrix element being

oB(Jffz+21fff ). (1)

Suppose we start, as in Chapter vi, with a set of states based on a complete
set ofN individual sets of quantum numbers. We have seen in Chapter vn
that the inclusion ofthe electrostatic interaction ofthe electrons necessitates
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a, transformation from this scheme to an $-coupEng scheme in order to

obtain states in which this part of the Hamiltonian is in diagonal form. In

\
I 7 we saw thatMs andML can be retained as quantum numbers in an LS~

3oupling scheme it is only when the spin-orbit interaction is included that

it is necessary to pass to a scheme in which J and 31 are quantum numbers

in order to obtain a scheme of states in which the complete Hamiltonian is in

diagonal form.

On the other hand HM is not diagonal in a scheme in which J and 31 are

quantum numbers. Hence we see the place ofthe Paschen-Back effect in the

theory of the Russell-Saunders case. For values of^ such that the HM
matrix components are small compared to the spin-orbit-interaction matrix

components the eigenstates of energy will be nearly those in which J and 31

are quantum numbers. This is the weak-field case of the preceding sections.

For values ofJf such thatHM is large compared to the energy of spin-orbit

interaction, the magnetic term will dominate and the energy eigenstates

will be nearly those in which Ms and ML are quantum numbers. For a

variation of &t? from zero to such strong values there will be a continuous

change in the character of the eigenstates from one of these limiting types

to the other.

Predominance of the magnetic-field energy therefore draws the eigen

states toward those in which J/s andML are quantum numbers. In view of

the fact that HM commutes with 2 and S2
, and that we can have a scheme

of states in which SLNSML are quantum numbers, we see that there is no

tendency of the magnetic field to break down the coupling of the individual

orbital or spin angular momenta of the electrons into a resultant L and SL*

In the Russell-Saunders case therefore the Paschen-Back effect results from

a competition between the spin-orbit interaction which works for the JM
scheme and the magnetic field which works for the MSML scheme. Since

M =Ms 4-ML is a quantum number in both schemes, we see that the groups

of states having different values of If may be treated independently. In

dealing with a particular N group we may set up the secular equation for

the energy values either in theMSML scheme or in the JM scheme. For the

former we need to have the non-diagonal matrix components of the spin-

orbit interaction and for the latter we need the non-diagonal matrix com

ponents of the magnetic energy. The matrix in the MSNL scheme is more

nearly diagonal at the outset for strong fields, the matrix in the J31 scheme

* This is true in so far as we treat the magnetic perturbation as of the form of (1). Kigorousiy

however there are other terms proportional to the square of the vector potential as mentioned in

lO5^. They do not commute with the orbital angular momentum, and so at fields strong enough to

make them important L and the individual Ts of the electrons are no longer quantum numbers.

However, this is of purely theoretical interest because the fields necessary are much greater than

any attainable ones.
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for weak fields. These matrices may be obtained from tie calculations

already given in other chapters so that the secular equations can be written

down for any special case and solved by the usual methods. Except for the

of one-electron spectra, which has been already fully treated in 105
,

this procedure will not be carried out in detail, for it can lead into very

lengthy calculations vhich have very little applicability to spectroscopy
since the fields needed to produce large Paschen-Back effect are seldom

obtainable. The best experimental illustrations of the Paschen-Back effect

are in connection with hvperfine structure (518
) where attainable fields can

a complete transition from one scheme of states to the other.

The Paschen-Back effect was important in the pre-quantum-mechanical

theories of atomic spectra for the information it gave about the coupling
relations, was studied in this connection by Heisenberg and by Pauli.*

Soxnmerfeldt showed the relation of an old classical coupling theory of

Ybigt to the effect* The quantum-mechanical treatment was first given by
and Jordan and detailed cases were discussed by Darwin.J

Although the preceding remarks have, for definiteness, been made for the

Russell-Saunders case, it is evident that they hold with appropriate minor
modifications ia the case of any other coupling for the unperturbed atom.

PROBLEM.

ShoT- *fcat for all : &amp;gt;i -T--rr:Ls the sum of the magnetic changes in energy of all states of the
same Jf :s equal to c$ J/2*J9 where Sf is the sum ofthe Lande g factors for the corresponding states
witn in a n-eaJt field. TMs is known as Pauli*s f/-permanmce ruh.

6. The Paschea-Back effect: Ulustrative examples.

As an illustrative example we take the 4*4cZ 3
jD-&amp;gt;4s4p

3P multiple! in

Zn 1 which has been studied by Paschen and Back and later by van Geel.

TTne first reference includes a number of other cases, tie emphasis being on
the fact that strong magnetic fields bring out lines which violate the ordinary

rale on J so that in the magnetic field the 3
D~&amp;gt;

SP multiplet is

completed to all nine lines instead oftie usual six. TMs is, ofcourse, a simple

consequence of tie fact that the states in a strong magnetic field are not
characterized by precise J values. The second reference provides accurate

Intensity measurements on the forbidden lines for various field strengths.

*
HZKOBSTBEBG, Zeits, fur Phys. 8, 273 (1922);
PAUIIS ibid. 16, 155 (1923); 31, 765 (1925).

f SOMMEBEEID, Zeits. fur Phyg. 89 257 (1922).

J HnsENKRBG and JOBDAS, Zeits. for Phys. 37, 263 (1926);
C. G. DABWBT, Proe. Roy. SCM:. A115, 1 (1927);
K, BAEWIN, ibid. At 18, 264 (i928).
PASCHEK and BACK, PJiyriea 1 261 (1921);
VAST GEEL, Zeits. fiir Phyi. 51, 51 (1028).
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The matrix components of HM in the SLJ3I scheme are obtained from
931I and IG32. They are

= * (
J L

^/-^-wVJ ~~
*

where g(SL J) is the Lande factor of 216 .

The Zn 1 4s 4p
3P intervals are 190 and 389 cm 1

, so the weak-field theory
is adequate for them. The 3D intervals, however, are only 3-23 and 4-94 cm 1

,

so the quadratic term in the perturbation theory is important here. The
interval ratio shows that we are fairly close to Russell-Saunders coupling.
The 4s 4d 1D is 300 cm-1 below the SD

5 indicating a strong perturbation of it

by 4p
21D as discussed in I 15 .

Applying the perturbation theory to 3D we find for If= 3 a linear

variation with the field ofthe energy of
3Df 3

. For Jf = 2 there is an inter

action between the corresponding states of 3D3 and
3D2 and for Jf = 1

,

there is an interaction between these states of all three levels of 3D. For the

fields used the second-order perturbation is adequate. Using the matrix

components (!) and the unperturbed level separations and writing TJ
for

(oK/hc) 9
we readily find for the quadratic perturbations:

Coefficient of ff in quadratic perturbation of

Jf=2
1

The numerical value of
TJ

is 4-674 x 10~5J^ where Jf is In gauss,

Paschen and Back publish data on the line 3D2
-^ SP for Jf&quot; = 39340

gauss. Since 3P does not split this gives us directly the magnetic perturba
tion of 3D2 . For this field

TJ 1*84, so the quadratic displacements of the a

components which involve the If= 1 states should be 0-22 cm 1 whereas

they find 0-15 and 0-40 for the Jf= i and + 1 components respectively,

The TT component involves Jf= for which the shift should be 0*35 and

they report 0-32. TMs agrees within the accuracy of the data.

Van GeeFs measurements on these lines are given in his Fig. 5 which we

reproduce as Fig. 416 with the addition of a smaH mark on the wave-length
scale at 3281-927, which is the position of unperturbed

3D2 -&amp;gt;

3P given from

the energy values ofthe levels. The broken lines show the splittings as given

by the weak-field theory, the heavy lines are drawn through the experi
mental points. As drawn the departure for 3D2

-&amp;gt;

BPQ appears to be linear and
too large. That is because the broken lines have been drawn to converge at
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3281-95 instead of 3231*927. When the change is made it is seen that the

uncertainty of the points is too great for a satisfactory comparison with

theory. That Is probably because this is a line which is forbidden in weak

fields and is weak even at the fields used and so is difficult to measure.

The data on 3D1
-&amp;gt;

3P are probably more accurate since this is a stronger

line. For this line he finds the quadratic effect at Jf = 30,000 to be - 0-185

and 0-334 cm-1 for the components involving 31= 1, whereas the

theoretical value is 0*268; and for the component involving Jf = he

finds a shift 0-297 as compared with a theoretical 0-360.

3281-95 \ &amp;gt; 3282*18

Fig. 4&quot;. Paschen-Back effect in SD -&amp;gt;

SP multiple* in Znl.

The more interesting part ofvan Creel s work, however, concerns measure
ment ofthe intensities ofthe

4

forbidden lines as a function of field strength.
The theory for this was given by Zwaan.* It is easy to see how the intensity

changes occur. For example, the state which in zero field becomes Z
D\ is

represented by a T which is given by the perturbation theory to the first

ordering as (cf. 925)

where the matrix components, given by (1), are the same as we have already
used. The state that grows out of 3

D| therefore acquires some of the

^, Zeits. for Phys. 51, 62 (1928).
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iharacteristics ofJ= 1 and J=3 in addition to the J=2 which it has, strictly,

vhen unperturbed. If therefore we calculate the matrix component of

electric moment for transition to 3P, for instance, we find

-)I\H^DD

;he other two terms vanishing by the selection rule on J. The magnetic

perturbation term is proportional to tf? 9 so the quantity j(
3
Pg

!

;Pj^i)l
2 which

measures the radiation intensity will vary as Jf2
.

The intensity of all the ordinarily forbidden components as a function of

Seld strength was worked out in this way by Zwaan. The components ofthe

Line
3D3

-&amp;gt;

3P for which AJ = 3 were found to vary as 3f4
,
while the two lines

and 3D3
-&amp;gt;

SP1 for which AJ= 2 varied as Jf2 for weaker fields.

tan

tan

L8

2.0

IOQO 5GOO iOOOO 290m 3Q8GQ

H in gauss

Fig. 5. Dependence of forbldden-ilne strength on field in
Paphen-Ba^k

effect

for 3D2 -&amp;gt;

3P HI Zn I. (I is the strength measured with yfo of the strength of the line

^-V^PO as toait.)

This JF2 variation is simply the leading term of a development in powers of

M* ; he found as well the coefficients of tf3 for the lines,

The results for the relative strengths of the lines 3D2
-&amp;gt;

3P and 31V
as found by Zwaan are (p

= 3*0 x 10~5^f):

Component: 1-0 0~&amp;gt;Q
~ 1 &quot;^

*D*-^PO t V I

Van Geel measured the sum of the intensities of 3D2
-^ 3P relative to

*DI-**PQ as a function ofthe field# between 10,000 and 30,000 ganss. The

agreement is shown in Fig. 516 (van Geel s Fig. 1) where the log of the
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Intensity ratio Is plotted logJf . The broken line Is that given by the

theory. TMs Is a very satisfactory agreement. He also studied the departure

of the intensity of the i-&amp;gt;0 1-0 components from the p
2 law as

given by the p
3 terms and found good agreement with theory.

The by Pasehen and Back contains a number of other examples of

the of forbidden in the magnetic field, but van Geel s are

the only quantitative intensity in this field.

We now to a brief discussion of some old data on the Zeeman effect

in Hgl which provide an illustration ofa Pasehen-Baek interaction between

a a triplet term made possible because of the breakdown of

Kusseil-Saujiders coupling. The data are due to Gmelin.^ He worked with

low resolving reported all the Zeem.an patterns as triplets, The

spmtingofA4916(te^
15 -^ft?6p

1P1)hefoiindtobe4-72x iO-Serar1
gauss,

which is witMn 1 per cent, ofthe value ofthe normal spitting. From

It we may that = 1-01 for this *P. For A5769 (85 6d
3D2 -&amp;gt; *Pi) he found

a specific of 5-38, and for (65BdW^P^) he found 4-95.

If we the relative intensities of the pattern components are

given by theory, it is easy to calculate that the centre ofgravity ofintensityt

of an unresolved would come at an apparent specific splitting

( f# the normal, where gD gp are the g factors for the D2 and

Px levels respectively. In this way Gmelin^s data leads to observed g values

of 1-04 and 1-10 for ID2 and
3D2 respectively. The sum is 2-14, whereas the

of the Lande values is 1-GO-f- 1-17 = 2*17, a fair agreement for such data,

From the departure ofthe g values normalwe can get, by the method

of 3185 a estimate of the departure from Rnssel-Saunders coupling.

Calling the quasi-singlet level A quasi-triplet B we have

g(A)=g?DJ K^U)!* -r ?&amp;lt;,) \(*Dt\A)\*

g(B) = ff?D2) |(U&amp;gt;, B)| +g&amp;lt;*Dt) \(
3D

2\B)\
Z

wMch the observed values of g(A) and g(B) together with the Lande

values ofg(
lDt) 3(D%) lead to

which is a rather departure from LS coupling. This rough result is

out by intensity measurements by Bouma5f who found A5769 and

A5790 of equal intensity, which would indicate

9 Ann- der Phys. 28y 1079 (1909); Phys. Zeits. 9, 212 (1908); 11, 1193 (1910);
and LOBISG, Phys. BCT. 46, 888 (1934), have since made much better measure

ments on a more detailed comparison with the intermediate-oonpling theozy than
that given tere.

f and BT.ATB, PML Mag. 8, 765 (1929), have made good use ofthis method of treating
ttnresoled Zeeman patterns.

J BOIJMA, fur MJB. 88, 658 (1925).
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So much for the first-order effect. Zeeman* found a quadratic displace-

aent of A5790 which was later studied by Gmelin. Ifwe had pure LS coup-

tug there could be no such effect because the magnetic perturbation has no

aatrix components connecting different singlet states. In view of the fact

hat the qnasi-singlet A has a large component of 3D2 in its eigenstate, it is

Me to show a Paschen-Back interaction with 9D^
3D3 . It happens that

1 is only 3*2 cm&quot;
1 below 3DX ; hence its states will show a quadratic effect

lownward equal to

3-2

Vorking out the details we find that the centres of gravity of the a and TT

somponents should show respectively displacements of 1*33 x 10&quot;&quot;

10a^f2

jad - 3-48 x lO-^aJ^2
, where a is written for

|(
3D

2j^)j
2

. What Gmeiin

observed was no shift for the a components and a quadratic effect of

-1-41 x 10~10^2 for the TT components. This corresponds to a =0-40, in

rood agreement with the value 0-32 derived from the departure of the g*s

rom the normal Lande values.

It thus appears that the existing data onA5790 is in accord with the theory

ind exemplifies a Paschen-Back displacement of a quasi-singlet line arising

rom departure from Bussell-Saunders coupling. More accurate measure-

nents on this line are desirable for a more definite check. This interpretation

&amp;gt;f Gmelin s data disagrees with that given by Back,f who tries to relate the

matter to hyperfine structure.

7. Quadmpole lines.

The theory of the Zeeman effect for quadrupole lines has been developed

ncidentaUy to other work in preceding sections, so brief comment relating

t to the experimental work is all we need here. The splitting of the energy

evels, being a property of the levels and not of the transitions, is given by
ihe discussion of other sections of the chapter. The details of the picture

soncerning angular intensity and polarization, associated with different

shanges inM 9
have already been worked out in 64 .

The first experimental work on this point is that of McLennan and

ShrumJ on the green auroral line. As discussed in 5n, this is the 1jS -&amp;gt;

1D3

transition in the normal 2p
4
configuration of neutral oxygen. The first

Zeeman effect observations were taken in the longitudinal direction. From

bhe results of 64 we see that in this direction the All= 2 and Alf =

somponents have vanishing intensity, so the pattern is like that of a dipole

* ZEEMAS, Phys. Zeits. 10, 217 (1909).

t BACK, Handbuch. der Experimentalpliysik 22, i&l (1929).

J MCLEHKAH and SHBUM, Proc. Roy. Soc. A106, 138 (1924); A108, 501 (1925).

McLEKNAN, Proc. Boy. Soc. A120, 327 (1928);

SOMMER, Zeits. for PfcjH. 51, 451 (1928).
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line. The measured displacements gave gr= 1 from which the singlet cha

racter of the line was inferred. The transverse effect for this line was studied

by Frerichs and Campbell* who found the o- components at twice the normal

separation, corresponding to AJ/= r 2, as well as the TT components at

normal separation for A31- 1, all of equal intensity, in agreement with

the theory.

Segre and Bakkert studied the Zeeman effect of the 2D-* 2S doublets in

sodium and potassium. This work provides a detailed verification of the

theory in several respects. For sodium the 2D interval is so small that all

fields giving a measurable splitting showed a complete Paschen-Baek effect

in this term. For potassium the doublet interval is great enough (2-32 cm-
1
}

that the two lines can be studied separately. This was done in the oblique

direction at 45 degrees, as well as transversely, and the theoretical expecta

tions as to relative intensity and polarization of the components verified.

For higher fields the Paschen-Back effect begins to alter the intensities

and permits new components to appear. The theory is exactly like that for

dipole Hues we have to calculate the matrix components ofthe quadrupole

moment with respect to the perturbed eigenfunctions. In analogy with the

discussion of the preceding section the perturbed matrix components can

be expressed in terms of the unperturbed matrices by means of the trans

formation matrix from the unperturbed to the perturbed eigenfunctions.

Such calculations hare been made explicitly by MilianczukJ and the results

found to well with the experimental results of Segre and Bakker.

* FBEEICHS acd CAMPBELL, Phys. Rev. 38, 151, 1460 (1930;.
f SEGPJE and BAKKER, Zeits. fiir Pfcys. 72, 724 (1931).

J MniA&amp;gt;-czrK, Zeits. fur Phys. 74, 825 (1932).



CHAPTER XVII

THE STAEK EFFECT

The influence of an external electric field on atomic spectra was discovered

by Stark in 1913 and is known as the Stark effect. It was natural to expect

such an effect as soon as the Zeeman effect had been discovered and inter

preted theoretically in terms of the electron theory. Voigt gave attention

to the electric perturbation of atoms as early as 1899 and came to the

conclusion that the effects would be very small. He also made attempts to

discover an effect on the D-lines of sodium but without success.*

Stark s discovery was made on the Balmer series of hydrogen. It came in

the same year as the Bohr theory of the hydrogen atom, so that it was an

important additional success of that theory when, independently, Epstein

and Schwarzschildf calculated the effect in terms of quantized orbits and

predicted the observed line patterns exactly. Later KxamersJ carried the

theory further by using the correspondence principle to provide estimates

of the relative intensities of the lines in a pattern.

It soon turned out that hydrogen occupies a somewhat exceptional

position. Generally the splitting of a spectral line is much smaller than in

hydrogen although there are special cases in other spectra where the effect-

is comparable in magnitude with that of hydrogen. We shall see that this is

connected with the accidental degeneracy in hydrogen whereby terms ofthe

same n but different I have the same energy, except for the small relativity

fine structure. We shall also see that the cases of large Stark effect in other

spectra are those in which two terms which may combine according to the

optical selection rules lie close together.

The theory of the Stark effect in hydrogen was the first application of the

perturbation theory in quantum mechanics. It turns out that the positions

of the components in hydrogen as far as the first order effect (that pro

portional to field strength) is concerned is the same as on the quantized orbit

theory. But the effects ofsecond and third order differ in quantum mechanics

from the results of the older theory. New experimental work which carries

the study up to high fields has shown that the effect is in agreement with the

new theory. At very high fields another aspect of the effect becomes im

portant, namely, the destruction of quantized levels by the field. This has

the effect ofshifting the limit ofthe Balmer series toward the red by allowing

* VOIGT, Ann. der Phys. 69, 297 (1899); 4, 197 (1901).

f EPSTEIN,. Ann. der Phys. 50, 480 (1916&amp;gt;;

.SCHWABZSCHULD, Sitzber. Berliner Akad. 1916, p. 548.

J KBAMEKS, Danske Vidensk. Selsk. Skrifter (8), ra, 3, 287, and Zeits. fur Phys. 3, 169 (1920).
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the continuous spectrum to encroach on the part of the frequency scale

which is to the line spectrum in the absence of a field.

1. Hydrogen.

We consider first the application of the ordinary perturbation theory to

hydrogen to find the effect of weak fields on the energy levels.

Suppose the electric field of strength &amp;lt;f in the negative z-diiection so the

electron is on by SLforce in the positive z-direction. Its potential energy
in the field of the nucleus is then

U=---ez. (1)r x /

Because ofthe fact that the potential energy tends to x for large positive
values of z. al energy levels are allowed. But the spectrum, has a quasi-
discrete structure which be investigated by treating ~~e$z as a per
turbation in the usual way.

Owing to the degeneracy of the unperturbed states of hydrogen it is

necessary to the particular choice of unperturbed eigenfunotions with

to which ecfz is a diagonal matrix with regard to the sets of initially

degenerate states. TMs is accomplished, as Schrodinger and Epstein* have

slioini, by solving the hydrogen-atom problem by separation of variables in

parabolic coordinates. We write

The surfaces so defined are paraboloids of revolution for and
-q

and planes for 9. The paraboloids of both families have their foci

at the origin, those with f= constant extend to z= oc, those with
17
= con

stant to z = -f x. For these coordinates we have

and the Sclnodinger equation for the perturbed atom becomes

TMs permits a separation of variables

$=F()G(
to the equations for F and 0:

(4)

*
SCHBODKGER, Ann. der Phys. 80, 457 (1926);
EESTEE?, Piys. Eev. 28, 695 (1926).
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discussion ofthese equations for the case = In the usualway shows that

ey can be solved in terms of Laguerre polynomials. The solutions ofthese

nations are

tiere ugj
td n = ki

and &2 being positive integers or zero. The energy levels are, of course, the

me as are obtained by solving in spherical coordinates (
25

). The values of

or /?2 in terms of k or fc2 are given by

A--^&quot;. (6)

ae final result for the normalized wave function of a state characterized

7 the quantum numbers n km where k is written for k is

For a first-order calculation of the perturbation of the atom, due to an
3ctric field we need the matrix of 2 with regard to the states of the same n.

ais may be calculated from known properties ofLaguerre polynomials and
und to be diagonal in k and m. The diagonal elements have the value

(nkm\z\nkm)=^^n&amp;gt;(kI k2 ) a, (8)

that states for which 1^ &amp;gt; 2 are those which give a greater probability
r the electron to be at z &amp;gt; 0. Erom this result it follows at once that the

st-order alteration of the energy of the state n km is

-f&fo-jyekfa, (9)

.at is, the states in which the electron is more likely to be in the z &amp;gt; region
e lowered in energy. This calculation neglects the relativity-spin fine

nicture and so is applicable only for fields producing perturbations large

mpared with this fine structure.*

We shaE not give the details of the calculation of the second- and third-

der effectsf but shall pass now to a comparison of the theory with experi-

* The calculation including the fine structure was carried out independently by RQJANSKY,
ys. Rev. 33, 1 (1929), and SCTT,AFP, Proc. Roy. Soc. A119, 313 (1928). It turns out that there

i linear effect for very weak fields owing to the degeneracy of the levels 2
Zjr,4-| and \L -f !),+

the hydrogen fine structure ( 45
). As the Stark displacement becomes comparable with the fine

Ticture a non-linear effect sets in, which for larger fields goes asymptotically into that given in

3 text.

j The formulas (11) and (12) for the coefficients of ^- and &* in the Stark-effect displacements
re not obtained by using the elements of e z which are non-diagonal in in the usual second-

d third-order perturbation theory (this would involve a very inconvenient summation over

the levels of the discrete and continuous spectrum), but by writing 1?\ G, W9 pl9 and /22 in

i each as a power series in f and then solving in succession the equations obtained by equating
s coefficient of each power of f to zero.
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ment. Ifwe measure in kilovolt/em and write v^n k^ 1*2) for the first-order

alteration in cm&quot;
1
. (9) becomes

v^n I i t2 )
= 0-0642 n (l\

- k2 } , ( 10)

where thenumerical value ofthe coefficient is calculated from the theoretical

expression. The original absolute measurements of Stark gave an experi

mental value of 0-068 but recent precision measurements by Sjogren and by
Kassner^ agree -within 1 per cent, with the theoretical value. Xearly all of the

experimental data refer to the Baimer lines,f For fields up to 100 kilovolt cm
the quadratic effect is negligible in comparison with the linear effect.

From 54 we know that the AOT = transitions will show parallel polariza

tion in transverse observation and will be absent in longitudinal observation.

Also for transverse observation the transitions \m = I give radiation

polarized perpendicular to the field. So far, this is just like the Zeeman effect.

There is a difference in the longitudinal observation. In the Zeeman effect,

the lines due to transitions where m changes show circular polarization.

Here the line due to a transition (m )-&amp;gt;(* 1) is at the same frequency as

{ m}-*( ?-i). Theoretically each of these gives circularly polarized

light but in the source there is an incoherent superposition of the two con-

tributions giving no polarization in longitudinal observation. This is also

true for fields where second- or third-order effects are appreciable. These

predictions concerning polarization have been checked experimentallyJ so

transverse observation is used to get complete patterns.
Consideration of the range of quantum numbers shows that the pattern

will be symmetric around the position of the unperturbed line. The com

ponents in a pattern differ in intensity because (a) individual transition

probabilities differ, (b) some components are the sum of several transitions,

(c) excitation conditions may put unequal numbers of atoms into various

states of the initial level. As always, this latter effect is most difficult to

control and is probably the principal source of discrepancies between theory
and observation on relative intensities.

Theoretical calculations of relative intensities were made by Schrodinger
and by Epstein (foe. cit.). These agree when a correction in Epstein s work
is made. In Fig. I 17 the theoretical patterns for the first four lines of the

Balmer series are shown, the unit of abscissa being the basic splitting
0-0642&amp;lt;f cm-1 and the ordinates being proportional to the relative intensities

in the pattern for any one line. The cross-marks indicate measured relative

* SJOGBEN, Zeits. filr Phys. 77, 290 (1932);
KASRTCB, ibid. 81, 346 (1933).

f FBEKICHS, Ana. der Phys. 19, I (1934), has succeeded in obtaining the Stark effect of the

Lyman series. Here Hie patterns are entirely due to the splitting of the initial levels since the
final Is level is unaffectec! by an electric field.

| STAKK and WENBT, Ann. der Pbys, 43, 991 (1914).
GORDOX and MESKOWSKI, Xaturwiss. 17, 368 (1929).
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itensities. The general agreement is good but attempts to make an accurate
st of the theory encounter many difficulties. When the hydrogen atoms
re moving rapidly as in canal-ray sources, the relative intensity of the

ifferent lines is disturbed by what appears to be due to differential destruc-
;on ofexcited atoms by collision from the different states of the initial level.

fc has been shown* that when the atoms are moving in the direction of the

Hn

T

3 2 Q I /4 tO 8 6

i !

Jl

1

32282420 16 t2 8 4 26ID&222638

Fig. I17 . Stark-effect patterns for the first four Bakner lines. The theoretical relative

strengths of the components of each line are shown by the lengths of the bare,
with very weak components indicated by half circles. The cross-marks indicate
the measured relative intensities (principally from Foster and Chalk) of certain

components of the same polarization.

field the high frequency components of the Stark pattern are weaker than

the others (and are stronger when the atoms move in the direction opposite

bo that of the field). Since the high frequency components arise from states

3f higher energy in the initial state, the experimental result indicates that

these states (for which, the larger values of ifrf are on the forward,
*

exposed/
side of the atom) are more subject to quenching by collision than those of

lower energy.f WierlJ has shown that the intensity dissymmetry is not
* STARK and KIBSCHBATJM, Ann. cLer PJiys. 43, 1005 (1914);

WILSAB, Gott. Nackr. 1914, p. 85;

LusfELAKD, Ann, der Phys, 45, 517 (1914).

f BOHK, PhiL Mag. 3D, 394 (1915);

SLACK, Ann. der Phys. 82, 576 (1927); Phys. Rev. 35, 1170 (1930).

t WIEBL, Ann, der Phys. 82, 563 (1927).
cs 26
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present when the field is perpendicular to the motion ofthe atoms, nor when
the canal rays go into a high vacuum.

The intensity measurements by Foster and Chalks Mark and Wieri, and

others* do not agree in detail with the theory, but provisionally we shall

regard this as due to the large number of variations in physical conditions

in the experimental work.

An interesting experiment has been performed by Wient by sending a

hydrogen canal ray beam through a magnetic field & so that the atom s

velocity v is perpendicular to $* From the standpoint of a coordinate

system moving with the atom this gives rise to an electric field of amount
v x 3f

t

c. which can produce a Stark effect. Of course the magnetic field

gives to a Zeeman effect, but this can be made smaller than the electro-

dynamic Stark effect. The ratio of the basic energy change f&fa to the

-irrmc of the Zeeman effect is (3;a)(i?-c) where a is the fine structure

constant. For t*- iO8
cm/sec the ratio is 1-4, but as the strongest lines in the

Hy pattern are displaced 15 to 20 times the basic unit we see that at such

the electric effect is about 20 times the Zeeman effect. Such speeds
were used by Wien. The experiment is extremely difficult and the pictures
obtained are quite unsharp. The observed effects agree with theory to within

the rather low accuracy attained.

We turn now to a discussion of the experimental results for the quadratic
and cubic Stark effect in hydrogen. This has been studied up to fields of 10s

volt/em. The theoretical energy change in the quadratic effect has been

to be

This differs from the quadratic effect in the classical theory by the ap
pearance of the additive -f 19 in the brackets and by the fact that the m
values are all one unit lower than in the older theory. Similarly the theory
for the third-order effect has been worked out by Doi who finds for it the

energy change

n]. (12)

* FOOTIEB and CHALK, Prw. Roy. Soc. A12S, 108 (1929);
StABK and WKBL, Zfelts. fur Pays. 58, 526 (1029); 55, 156 (1929);
Kiun, J&p. Jour, Phys. 4, 13 (1925);
ISBGCDA and HITAMA, Sci Pap. lust-. Piiys. Giiem. Res. Tokyo 9, 1 (1928);
STAEK, Ann. cier Pfeys, 1, 1009 (1920); 48, 193 (1915).

f WXEN, Ann. der Phys. 49, 842 {1916).

J Enwrap Phys. Rev. 28, 695 (1926);

WKNTZEL, Zeifcs. fir Phys. 38, 527 (1926);
WAT.T.TO, ibid. 38, MO (1926);
V&s YLSCK, Proc. Nat. AeL Sci. 12, 662 (1926).
Remit only jHished in ISHTOA Mid HIYAMA (Joe. cil.}.
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It is convenient to express the shift of a particular component of a Balmer

line in the form ACcm-
1
)
= off- 6e?2 c&amp;lt;f

3
(13)

measuring &amp;lt;? in million volt/cm in order that the coefficients be of com

parable order of magnitude. Ishida and Hiyama have given a table, which

we reproduce as Table I 17 ofthe coefficients a, b s c, for the strong components

ofH a, H f$ and Hy . There are two columns for b and c corresponding to the

quantum-mechanical theory and the old quantized-orbit theory predictions.

The column headed transition gives the quantum numbers kj^m of

initial and final states for the transition in which the linear effect is positive,

that headed label gives the linear effect in terms of the basic splitting, and

the polarization of the component.

TABLE I17 . Coefficients of Stark displacements in (13).

b c

Transition Label Old Old

The quadratic effect was discovered by Takamine and first studied care

fully by Kiuti and by Rausch von Traubenberg and Gebauer.* The cubic

effect is studied on the components 18 IT and 1577 of Hy in a later paper

by Gebauer and Rauschvon Traubenberg.f
We shaE content ourselves with

a report of this work. By reversion of the series (13) we see that the field

strength can be calculated from the observed shift A by the formula

* KICTI, Zeits. fur Phys. 57, 658 (1929);

EATJSCH vox T^TTBEKBEEG and GEBi^B, *&. 54, 307 (19M); 56 *

f GEBitJEE and RUJSCH vos TuiraESBEMJ, Zeits. fur Phys. 82, 289 (1930).
26-2
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Ifthe theory is correct this formula gives the same value ofthe field strength
on a particular plate when applied, to the various components ofthe patterns.
This is the case to an accuracy of about 0*1 per cent, in the experimental
work. The procedure was to calculate & from the observed effect on H jS and
then to compare the observed effect on Hy -flow and -f-lSw with the

theoretical values as calculated with the values of g determined from H /?.

We may the theory ofthe linear effect as already adequately tested

in other experiments and subtract its theoretical amount from the observed
shift to obtain the observed amounts of the shift due to the higher order

effects. We have prepared Fig. 217 in this way from the data on the 1877

violet component of Hy. The points give the observed data and, for com
parison, are given theoretical curves for the amount of the quadratic effect

Fig. 2&quot;. The second- and third-order Stark effect on the 18 IT violet component ofH y .

alone, the quadratic plus cubic effect, and the quadratic plus cubic effect

as calculated on the old theory. It is clear that the data axe best represented
by the curve representing quadratic plus cubic effect on the quantum-
mechanical theory. There appears to be a small systematic departure at
the higher field strengths which is perhaps due to the fourth-order effect.

The data are evidently not well represented by the old theory.

2. Stark effect at the series limit.

As already mentioned in the preceding section, the potential energy ofthe
electron in the applied field tends to oo as z tends to large positive values.
This has as a consequence that the spectrum of allowed values is really
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continuous, there being admissible wave functions for all values of the

energy. Nevertheless we have seen that the spectrum gives sharp line

patterns in Stark-effect experiments. We wish now to examine the situation

more carefully.

The potential energy U of 117 1 has an extremum at the point x= 0, y= 0,

z = d =
Ve/&amp;lt;f 5

where the electric force due to the nucleus is just balanced by

that of the external field. At this point the potential energy has the value

Z7 =s -2VeV. (1)

It is natural to expect that this energy value and the distance d play an

important role in the Stark effect. This is in fact the case. Examining the

formulas 1 179 and 117 1 1 we see that the coefficients of the quantum numbers

can be written- f J7 (aid) and ^Z7 (a/d)
8
respectively, and similarly for the

cubic term of 1 17 12. In a general way this might lead us to suspect that the

developments have a validity only for small (a/d) and, as the region ofspace

occupied effectively by an electron in the nth state has linear dimensions of

the order n2a } we may expect the perturbation theory to fail for the nth state

when d~n2a*

The first theoretical discussion of the special features of the problem in

this region was given by Robertson and Dewey* from the standpoint of the

classical quantized orbits. In that theory only those orbits can be quantized

which are conditionally periodic, so the upper limit of the discrete energy

spectrum is the maximum value of the energy for which conditionally

periodic orbits exist. They found that there existno quantizable orbits whose

total energy is greater than

and quantizable orbits in the neighbourhood ofthis limit only exist provided

that g / ne* \*
*

In the classical mechanics the orbits for which L3
= are ruled out because

they lead to collisions with the nucleus. Hence the least admissible value

of Lz is JL This value of Lz leads to an upper limit of the discrete spectrum

which in wave numbers is given by

whereas the value of the extremum of potential energy ?7 is given by

where g is measured in I06 volt/cm in both formulas. These two expressions

* ROBERTSON and DEWEY, Phys. Rev. 31, 973 (1928).
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are plotted as functions of S In Fig. 317 . From this we see that the discrete

spectrum may extend up to higher energy values than the extremum of the

potential energy function. At first sight this may seem a surprising result.

If the particle has enough energy to get to the configuration where the field

force balances the nuclear attraction we are apt to think that it wiU surely

do so. But is not the case. A simple mechanical example is that ofa ball

rolling under gravity inside of a spherical bowl, one side of which is partly

away (as with the Mad Hatter s tea-cup). The ball may perform
oscillations in a vertical plane which does not pass through the broken wall.

whose total energy exceeds the energy limit where the non-periodic motions

begin, that is, at the energy corresponding to the lowest place in the rim.

of the bowl.

2009

Fig, 317
. Classical-dynamical energy limits for quantized orbits in the hydrogen atom

in an electric field.

So much forthe classical-mechanicaltheory ofthe problem. The quatttmn-
mechaniea! theory has been treated by Lanczos* and is based on a direct

discussion of equations 1
174 for the case &amp;lt;f ^0. The problem is somewhat

complicated by the peculiar dynamical interaction of the motion in the f

and
7] coordinates, but the essential point is the coupling of discrete and

continuous energy eigeastates of the same energy value. TMs feature of

quantum mechanics was first discussed by Oppenheimer5t who applied it to

a calculation ofthe probability ofionization ofhydrogen in the normal state

by the application of a steady field and showed how this mechanism could

account for the emission of electrons by cold metals in strong electric fields.

It has become well known through its application by Gurney and Condon

*
LAXOSQS, Zcits. fir Phyi. 62, 518 (1930); S5, 431 (1930); 88, 204 (1931).

j OFFESHEDCXB, Fiiys. Rev. 81, 66 (1928).
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ind by Gamow* to the problem of oc-particle disintegration of radioactive

dements.

The effective potential energy functions in the two equations are

sdiich are of the forms indicated in Eig. 417 . The wave equations cannot be

solved exactly but have been treated by the Wentzel-Brillouin-Kramers

method. The second of them leads to discrete energy levels which depend

parametrieally on j82 ,
m and the quantum number k2 which gives the

number of nodes in
&amp;lt;?(TJ).

We shall call this relation W = TF2(& ^ =
m)* Tlie

first equation does not lead to discrete values ofW for a fixed &; instead we

are presented with the phenomenon of the leaky potential barrier. We are

-1ZT-

Fig. 417 . Effective potential energy functions in the and
7]
coordinates for hydrogen

in an electric field.

interested only in the quasi-discrete levels, associated with values of W
below themaximum of U^). These can be found with considerable accuracy

by replacing i71(|) for large f by some other curve, such as the dotted one in

the figure, so that the new equation has discrete energy levels. These will

depend parametrically on &, &13 and m, say F= W^^k^m). Then the

allowed energy levels of the problem are the values of IF for which

Wi(pl9 ki,m) = Wt(l-pi,kt,m),

where the relation &+ jB2
= I has already been taken into account.

Now let us consider the fact that the true U^g) slopes downward for large

& instead of having a horizontal asymptote as in the dotted curve. For a

value of W=Wi(Pi,ki,m) the wave function will oscillate and have I\

* GUBNEY and CONBOK, Mature 122, 439 (1928); Phys. Rey. 33, 127 (1929);

GAMOW, Zeits. fur Pkys. 31, 204 (1928).
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nodes in the region I. In the region II it &quot;will approach zero in a quasi-

exponential way and in the region III it will again assume an oscillatory

character but will have agreatly reducedamplitude relative to the amplitude

in I. For a value of IF differing slightly from F1(^I ,\ , m\ the behaviour in

I iviil be quite similar, but owing to the slight difference in the wave-length

of the de Broglie waves it will increase quasi-exponentially in region II so

that the oscillatory portion in region III Trill have a much larger amplitude

relatively than before, TMs change in character of the eigenfunetion from
*

inside small outside to
*

small inside large outside* takes place as

a continuous function of IF but occurs in an extremely small range ofenergy

values near the value W^^k^m). We shall want the wave functions

so that the integral of their square out to some large value of f

is equal to unity. (TMs suffices to give the correct relative normalization,

for the behaviour of the oscillatory part of each wave function from a large

value of out to f= x is essentially the same, and thus we avoid dealing

with divergent integrals and the special technique for normalizing con

tinuous spectrum wave functions.)

In computing tie transition probability from any energy IF to a lower

state which shows a much smaller perturbation it is only the part ofthe wave

function in region I which plays an essential role, for in calculating the

electric-moment matrix component the wave function of the less-perturbed

state wiH be essentially zero outside ofthis region. By applying the Wentzel-

BriUouffi-Kramers approximation, Lanczos was able to show that the

intensity of radiation from initial states in the energy range da* at

JTjJ/Jj ,
k2 , m) T & is proportional to

I dojX

where X= e~~

The &quot; half-width
3

of the spectral line (i.e. the interval between the two

energies at which the radiation intensity has sunk to half value) is evidently

equal to 2JT. The value of X depends both on v
9 which is the classical

frequency of vibration in the | coordinate for the state in question, and 15

which measures the penetrability of the barrier between regions I and III.

If at I = we are sure that the atom has an energy about equal to that of

the energy level in question and that the electron is in the region I, we

represent the state by a wave packet built to give constructive interference

of the waves in region I and destructive interference in III. Such a packet



17 STARK EFFECT AT THE SEBIES LIMIT 409

m be built by superposition of states in the energy range of the order ofX.
& time goes on the constituent waves in the packet will get out of phase, so

le amplitude of the packet will decay in such a way that the probability
f the electron being in I contains a factor e~a where 8= 23/e-I/7r. This

iminution in region I is compensated by an increase in region III, so the

rocess corresponds to an ionization of the atoms by the steady field, or a

idiationless transition of electrons from the bound state of region I to the

:ee state of region III. Suppose a is the probability per unit time of leaving

3gion I by radiation. Then the total probability of leaving region I in unit

ime is (a -f S), so the fraction of excited atoms which leave by radiation is

/(oc-fS). The total intensity of the radiation from this level is therefore

his fraction of the value it would have been in the absence of the field

&amp;gt;nization.

Thus the effect of the field is to give an uasharp line whose width is

i/e~2J/7r and whose total intensity is diminished by the field-ionization

rocess. The actual calculation of the quantities v and I for high fields is

omewhat laborious although the values can be expressed in terms of

Uiptic integrals. Lanczos has made some calculations for the IS^r violet

-nd red components ofHy which are in general agreement with the experi-

aental work. The rather surprising result is that the violet component
emains sharp and strong to much higher field strengths than the red com-

sonent which fades out at about 0-72 million volt cm. As the violet com
ponent arises from an initial state of higher energy than the red component
TO might expect the opposite, for the high state has a more penetrable
carrier to go through. The explanation is that the initial state ofhigh energy

orresponds to the electron being mostly on the opposite side ofthe nucleus

rom the low place in the potential where the leaking takes place. In the

dolet component s initial state the electron is cautious and conservative,

Avoiding the leaky barrier; in the red state the electron is reckless and

mstrelj hurling itself against a less leaky barrier often enough to rob itself

&amp;gt;f the chance to shine !

3. General theory for non-hydrogenic atoms.

In this section we shall sketch the general results obtained by calculating

,he electric perturbation of any atom by the perturbation theory. If the

ield &amp;lt;f is in the negative z direction and P is the s-component of electric

noment of the atom, then the Hamiltonian of the atom in the field is

H=H* + gP,, (I)

rfiere H is written for the Hamiltonian of the atom in zero field. The

perturbation is therefore determined entirely by the matrix components
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of the z-component of the electric moment, a quantity with &quot;which we
are already quite familiar because it measures the strengths of spectral

lines.

If for a particular atom we already have a rather complete knowledge of

the energy levels and corresponding eigenfunctions, we may calculate the

matrix of Ps and proceed to apply the perturbation theory. The details of

the results so obtained naturally will depend a great deal on the mode of

coupling ofthe angular-momentum vectors and the amount of configuration
interaction. But we can, nevertheless, make some remarks which hold quite

generally for all atoms before treating the separate special cases that arise.

In the place Ps has matrix components only between states of

opposite parity. Second, for a state of given / value it has matrix com

ponents with other states whose J values are / 1, J and J -f 1. Third, the

order of magnitude of the non-vanishing matrix components involving
electrons in states of total quantum number n will be the same as computed
with hydrogenic wave functions. TMs we shall see is of the order 6-4 n2

cm&quot;
1

for a field of 100 kilovolt/cm. Because of this the second-order perturbation
&quot;between two states whose energy difference is more than 10 . (6-4)

2w4~ 400 n4

cm&quot;&quot;&quot;

1 is almost sure to be less than 0-1 cm-1 even at 1C5 volt/cm. As most of

the experimental workhas 0* 1 cm&quot;
1as the limit of accuracy and is carried out

at smaller fields, we see that the interaction of two terms several thousand

wave numbers apart is negligible. The combined effect of an entire series of

terms on a given term may be appreciable however. From our previous

study (
102) ofthe general features ofperturbations weknow that the effects

will be given quite accurately by the second-order formula provided the

initial separation oftwo interacting states is large compared with the energy
of interaction between them. So for terms separated by more than about

6*4 ?i
2 it wiP be sufficient to use the second-order formula. This qualitative

restriction coupled with the parity and J selection rules suffices to make
most cases tractable in this way. In such cases the displacement ofthe terms

is small compared to the effect in hydrogen and is strictly proportional to the

square of the field strength.

For a group of states lying close to each other a more accurate calculation

is needed. This can be made by forming a secular equation from the matrix
of the perturbed Hamiltonian by including just those rows and columns
which refer to the small community of close, interacting states. Solution of

this finite-matrix transformation problem will determine the mutual per-
turbation of these states and the transformation to a new set of states with

regard to which this part of the Hamiltonian is diagonal. This transforma
tion also enables us to calculate the values of the perturbation matrix

components connecting these perturbed states with the distent states and
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LUS to know how the second-order action due to them is distributed over

te community. TMs procedure is exemplified in the next section.

There is another qualitative remark ofimportance. Generally the electric

Isplacement ofexcited states is much greater than that oflow-lying energy

vels so that in most cases the displacements of the final state of a line are

3gHgible, the observed line pattern being a direct picture of the perturba-

on of the initial state.

Let us next consider quite generally the kind of pattern to be observed in

le quadratic Stark effect of a state described by the quantum numbers

J M. Using 93 1 1 in the second-order formula of 924 to express the depend-

ice on M of the matrix components, we may write for the displacement

(2)

^(aJlPjjSJ-l)!*fere a^S 11 &quot; r -j
-

$ -&QLJ-&PJ-1

^presents the perturbation by the levels for which J = J 1; a and a+ are

milar expressions for the perturbation by levels of Jf = J and J+l

^spectively.

The relative strength of the different components of the line pattern for

ransverse observation resulting when these states combine with an un-

erturbed level y J is likewise given by 9311 just as in the Zeeman effect

sf. 416 ). Writing (2) in the form

A(aJJf)=^l-5J/
2

J (3)

*t us consider the transitions from the states of the level a J to a level yJ

f the same J value. The TT component whose displacement from the position

f the unperturbed line is A jBlf2 is produced by the transitions Jf -&amp;gt;3f

nd M-&amp;gt; M so its whole strength is proportional to 23f2
, assuming

qual population of the various initial states. The a component line at the

ame place is produced byIf -&amp;gt;11 land M -&amp;gt;3f T 1 9 so its whole strength

3 proportional to [J (
J+ 1)

- If2
] for If ^ while for Jf= the strength is

proportional to J/(J-f-I). In the same way the relative strengths of the

ines in the patterns for a J-^J - 1 and a J-*J -M transition may be worked

ut. The results are summarized in the table:

* Relative strength of line component at A - BJ/2

i S Polarization
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These relative strengths are the analogues of the weak-field strengths of

416 In the Zeeman effect since they are calculated with the unperturbed

eigenfunctions.

We can also obtain some general results with regard to the appearance of

forbidden* lines in the Stark effect. The theory, of course, is analogous to

the corresponding case in the Zeeman effect as treated by Zwaan (616
).

The states $(j$J M) which perturb the state $(zJM) (where J = J or

/ 1) are of opposite parity and therefore will not give dipole radiation in

combination with the states which combine with ^(a J&quot;Jf).
But in the

electric field the eigenfunctions become perturbed so that in the perturbed

eigenfonetion arising from (j8 J If) there appears some ofthe eigenfunction

of the states (ot J&quot; If). By the results of 92 we have, to the first power in g,

where the subscript refers to the unperturbed eigenfunctions. Hence, if

(y J&quot;J1&quot;)
is a final state, whose perturbation by the field we may neglect,

of the same parity as j8 (with which it therefore does not combine in the

absence of a perturbation), the matrix component of electric moment con

necting the two states is given by

(5)

This expression can be somewhat reduced by using 9311 to express the

dependence on Jl
ff

andM of the first factor of the numerator in each sum-
mand. Thesquared magnitude of (5) measures the strength ofthecomponent
produced by the transition y J* M&quot;-+f}J M. It is evidently proportional to

the square of the applied field.

It will often happen that only one term in one ofthe three sums is appre
ciable. The strength of the forbidden pattern is then given by the square of
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that term alone. TMs is the case when the perturbation is principally due
to the interaction of two neighbouring terms. Erom (5) we see that the

relative intensity distribution in the pattern of the forbidden line is not the

same as in the case of a non-forbidden line.

To make this more explicit suppose that the important term in (5) in a

given case is one ofthose on the first line for a particular value of a. Then the

intensities are proportional to

/}
.

&quot;

(6)

The pattern to be expected is therefore that which applies for a combination

with the perturbing (not the perturbed) level modified by the factor

which is the ratio of the perturbation of the state in question to the un

perturbed interval between the interacting levels.

This is about all one can say without consideration of special cases. It is

evident that all of the knowledge concerning the matrix components of P
whichwe have acquired in connection with the intensity problem is available

for application here. Thus in the Bussell-Saunders case we can use the results

of 103 to write down formulas for the electric-field interaction of adjacent
Russell-Saunders terms. Likewise knowledge of the eigenfunctions in con

figurations showing intermediate coupling permits us to make corresponding

predictions concerning the Stark effect. The method is so straightforward
that there is no point in writing down explicitly formulas for the various

special cases. We shall turn therefore to the application of the theory to

typical cases in the experimental data.

4. Helium.

The first application of quantum mechanics to a non-hydrogenic Stark

effect was due to Foster,* who carried out the calculations and applied them

to his own experimental data on helium. He uses matrix components given

by use of hydrogenic wave functions, for which

(cf. 65
2, 3), In this spectrum the triplet intervals are so small that they may

be neglected. The lines for which the Stark effect is studied are the com

binations of the states with n= 4 and 5 with the 2 S and 2 P terms.

First let us estimate the Stark displacement ofthe finalterms to see that it

is negligible. 2 1
/S

f

lies 5857 cm&quot;
1 below 2 *P, so by 3172 the mutual perturba

tion of the M= states amounts to 0*0285^2 cm-1
,
where ff is measured in

* FOOTEB, Proe. Boy. Soc. A117, 137 (1927).



414 THE STABK EFFECT 417

105
volt/em. The If= 1 state of 2 1P Is not perturbed by 2 *S. Similarly 2 3$

lies 9231 cm-1 below 2 3
P, so the mutual interaction here is even smaller in

the ratio . These effects are quite negligible alongside of the Interactions

in the n= 4 and n= 5 groups.

Using the observed intervals between 4 1
8. 3

4 *P, 4 !JD, 4
lF and the hydro-

genie matrix components (1) together with their dependence on If and J as

given by 9s 11 and 1138 3 Foster set up the secular equations for the cases

If= 0, 1, 2 and calculated the roots for fields up to 105 volt/cm. The results

are shown in Fig. 517
5
where the ordinates are wave numbers measured from

100

0-2 OB 1-00-# 0-5

in 10
5

volts /cm *

Fig. 517
. Stark-effect interaction of the 4 *#, 4 1P, 4 1D and 4 *JF levels in helium.

the unperturbedD level and the abscissas are ff in 1 s
volt/cm . They form an

excellent illustration of the perturbation theory. The S term is so far away
that It is very slightly perturbed, but even so its perturbation is large com

pared with that in the 2 S or 2 P states. The tendency of the terms to repel

each other is nicely brought out, especially in regard to the F terms. There

the components withM= and 1 start out with larger displacements than

theM 2 state but are prevented from reaching as large displacement as the

M= 2 state because of repulsion by theM= 0, 1 components of the P level
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above. The if= 0, 1 components of the I level are really not Identical but
coincide within the accuracy of the drawing. The accuracy with which the
data is represented by the theory is shown by the experimental points for

105
volt/cm as given by Foster, the o s representing data from the 2 XP - 4 1P

J

*D
S

1F group and the x
J

s from the 2^-4 *P,
1D

5

*
j?

1

group.
Foster also calculates the variation of the relative strengths of lines in the

patterns with the field-strength. This is done by finding the transformation
to states in the groups which makes the perturbed Hamiltonian diagonal and

calculating their matrix components of electric moment with 2 1S and 2 1P
as final terms. The observations do not include intensity measurements, so

it can only be said that the observed intensities agree qualitatively with the

theory. An interesting feature of the intensity theory is that certain com
ponents may fade out at a certain field-strength and reappear again at a

larger value. This was checked experimentally.
Ishida and Kamijima* have obtained plates of the effect in helium up to

5 x 105
volt/cm and find their data in good agreement with the theory.

A study ofthe relative intensities ofthe lines in the patterns has also been
made by Dewey.f Her calculations were based on an application of the

Kramers-Heisenberg dispersion formula to the Stark effect as suggested by
Pauli.J Thisformulationoftheproblem, reached through the correspondence

principle, agrees with the quantum-mechanical theory.
Foster has studied the perturbation ofcertain helium lines in the presence

of both electric and magnetic fields.

5. Alkali metals.

We shall consider next the effect on the one-electron spectra ofthe alkalis.

Passing over the older theoretical work, jj
the first quantum-mechanical cal

culations are those of Unsold, ^f who simply considered the interaction in a

weak field of the terms of the same n but different I, using the hydrogenic
matrix components and the empirical values of the separations as in

Foster s helium calculations. A discussion of this formula in comparison
with experimental data has been given by Ladenburg.** It gives fairly good
values in all cases where it is applicable. This type of calculation has been

extended to stronger fields by Rojansky.ff

Consideration of the effect in the alkalis falls naturally into two parts : the

very small quadratic effect on lines whose initial and final states are very
* ISHIDA and KAMT.TTM-A, goi. Papers, lust. Phys. Ghem. Res. Tokyo 9, 117 (1928).

f DEWEY, Pkys. Rev. 28, 1108 (1926).

J PAUU, KgL Danske Vid. Selskab, Math.-fys. 7, No. 3 (1925).

FOSTEB, Proc. Roy. Soc. A122, 599 (1928); Nature 123, 414 (192ty.

H BECEBB, Zeits. fur Phys. 9, 332 (1922).

f UNSOLD, Ann. der Pliys. 82, 355 (1927).
** LABENBUBG, Phys. Zeits. 30, 369 (1929).

ft ROJAHSKY, Phys. Rev. 35, 782 (1930).
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sightly perturbed, and the transition from quadratic to linear effect, as in

helium., when the interacting terms lie very close together. As an example of

the first Mad we consider the data of Grotrian and Ramsauer* on the

principal series of potassium. The data were obtained in absorption for the

second, third and fourth lines.

According to 317 the 2P terms will be perturbed by the 2S and 2D terms.

As remarked at the end of that section we may use formulas of 103 in the

Russell-Saimders case to find the relative values of the perturbations on

the components of a term. If this be done it will readily be found that the

perturbation of a 2P term in a one-electron spectrum can be written

(I)

in which A, andAd are coefficients measuring the perturbation by the S and

D series respectively,

Theseformulas are based on the supposition that the
2D interval is negligible

and the 2P interval large compared with the amount of the effect. For 5 2P
in potassium the experimental values of the A s are 0-44^2

, 0-21&amp;lt;f
2
,

and 0*37&amp;lt;f
2
respectively (unit of &amp;lt;f

= I05 volt/cm) which are represented by

taking *4S=(H3 and J^=OG7 probably within the accuracy of the data.

The kind ofpattern to be expected and the relative intensities are readily

worked out from the results of 317. The prediction is that the line from

2P. is displaced by the amount A(
2
P|),

the single component appearing of

relative strength 2 and 2 in IT and a polarization, while from 2Pg we have a

component displaced by A(
2

P|)
which has strength 4 in TT and I in a polariza

tion and a component displaced by A(
2

P|)
ofstrength 3 purely in a polariza

tion, This accords with the data except that Grotrian and Ramsauer could

not detect the theoretically weak A(
2
P:) component in a polarization.

It is hard to say anything definite about the absolute value of the coeffi

cients. They are small both because the nearest perturbing terms are about

3000 cm*1
away and also because the nearest S andD terms below 5 2P are

almost as close as the nearest 8 and D terms above, so there is a tendency
toward cancellation of effects. The quadratic effect on the sodium D lines

has been studied by Ladenbur^.f
* OEOTBIAN and RAMSAUER, Phys. Zeits. 28, 846 (1927).

f LADE^BrBG, .Zeits. fir Phys. 28, 51 (1925).
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As an illustration of a more hydrogen-like alkali spectrum we shall

mention the effect in litMnm. This has &quot;been discussed by Condon* in a

manner analogous to Foster s work on helium. The 4D and 4 F terms are

close enough that a linear effect sets in at fields of the order 30 000 volt/cm,

while the 5D 5 5 F and 5 G are so close together that their interaction gives

a linear effect from the outset. Ishida and PukusMmaf have published

observations on the 2 P 4PDF and 2 P 5PDFG patterns which show

in all respects agreement with the qualitative predictions of the theory, and

in which the displacements are quite accurately given by calculating the

secular equation with hydrogenic matrix components.

*
COSDOS-, Phys. Rev. 43, 648 (1933).

t ISHEDA and FUCTSHIMA, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 9, 141 (1928).



CHAPTER XVJII

NUCLEUS IX ATOMIC SPECTRA

Except for brief consideration of the finite mass of the proton in Chapter v,

in connection with the theory for atomic hydrogen, we have treated the

nucleus so far not as a dynamical particle but as a fixed centre of Coulomb

force characterized solely by the atomic number Z. In this chapter we shall

the way in which the nucleus affects the structure ofatomic spectra.

The very fact that this topic can be put off so long indicates that the effects

are small. Nevertheless they are of great importance and afford a tool for

studying atomic nuclei. The most obvious feature to be considered is the

of the nucleus, as a consequence of which the nucleus has some

energy. The effect of this on the atomic energy levels we consider

in 1 . But more interesting is the fact that some spectra show a fine struc

ture of the lines, finer than the ordinary multiplet structure (on a scale of 0*1

to 1-0 cm&quot;
1
). This is known usually as

4

hyperfine
5

structure and, following
Pauli 9 is to be associated with quantum numbers specifying a degree of

freedom for momentum of the nucleus. The theory of the energy
levels resulting from this picture has received a great deal of attention in the

few years and is now fairly well understood, although much remains to

i&amp;gt;e done.

1. Effect of finite mass,

The theory for a nucleus of finite mass in an AT-eIectron problem has been

by Hughes and Eckart* and also by Bartlett and Gibbons.f The

energy of a system of N electrons^ eaeli of mass p, and a nucleus of

31 is given in terms of the velocities by

T r are the position vectors of the electrons and nucleus relative

to a origin. We Introduce the position vector R ofthe centre of masSj

the vectors g
t
- which give the location of each electron relative

to the nucleos s ___

***&quot;&quot;&quot;&quot;

Then the kinetic energy becomes, when expressed as a function of the pi ,

conjugate to %, and P, conjugate to U,

* HUGHES and ECKABT, Ffeya. Bev. 36, 694 (1930).

t BIETLETT and GIBBONS, Phys. Rev. 4*, 538 (1933).
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where \L is the reduced mass pM\(p -fM). Since the translational energy of

the centre of mass cannot change appreciably in a radiation process and

since P is a constant of the motion, we may as well confine ourselves to

states for which P= 0. Then we see that the finite nuclear mass has altered

the kinetic energy part of the Hamiltonian in two ways, by the substitution

of ft for p in the first term and by the appearance of the second term which

we shall call $:

This is evidently a quantity of type (?, as considered in 76 .

Suppose we know the energy levels for the case of infinite nuclear mass.

Then for finite mass the effect of the change in the first term (neglecting

spin-orbit interaction) is to multiply these levels by jLt //i= [1 -h/i/Jfj&quot;

1
. TMs

is what we found in Chapter v forhydrogen and hydrogen-like ions. For any
element the result readily follows from the fact that the potential-energy

function is homogeneous of degree 1 in all the positional coordinates.

This part has been called the normal effect.

The specific effect is that due to the matrix components of 8, which we
treat as a perturbation. In the zero-order scheme, we have from 767 the

diagonal element

(A i 8\A)=-^E {(a*| j&amp;gt;K)-(a&amp;lt;| j&amp;gt;|a&amp;lt;)

-
(tfi\p\a?Ha!\p\a*)},

the reduction to individual one-electron matrix components being possible

because pipj factorizes. Now p is a vector which anticommutes with the

parity operator& ( 1 1 6 ), hence all ofthe diagonal matrix components in the

first term vanish. Moreover the second term will vanish unless ak and a 1

refer to individual sets of opposite parity. Similar remarks can be made
about the non-diagonal matrix components given by 76

. With the main

features of the S matrix known the detailed calculation of the energies due

to this term may be made in any special case by the same methods as for

other types of perturbation.

Bartlettand Gibbonshave carriedout the calculationsforthe2p
5
3p ^&amp;gt;2p

5 3s

lines in neon using the Hartree field found by Brown.* They calculate the

matrix components in the zero-order scheme and from these the perturba
tions of the Russell-Saunders energy levels are obtained with the diagonal-
sum rule (exactly as in the calculation of electrostatic energies in Chapter

vn). In the case of the p*p configuration all the electrons outside closed

shells have the same parity, so the diagonal matrix components ofS contain

only the contributions due to interaction of the s closed shells with the p
electrons; these are the same for all the states of the configuration. In the

* BBOWS, Phys. Rev. 44, 214 (1933).

27-2
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j&amp;gt;

5 5 configuration this is not the ease, and it tunas out there that the 3P term

is displaced by 31% while the
1P term s displacement is 1% where Jc is a matrix

component connecting the 2p and 3$ states. Calculating the specific shifts

for the Xe22 and Xe20
isotopes and taking the difference (heavier minus

lighter), they calculate net shifts of 0-0136 cm&quot;
1 for the psp levels, of

cm-1 for the p
s s lP level, and 0-0293 cm-1 for the psP levels.

Hence in thepsp -&amp;gt;

j&amp;gt;

5 s array., the singlet lines will be displaced 0-0105 cm*-1

more than the triplet lines. This is in accord with the observations of

Xagaoka and Mishima,* although the theoretical value of the absolute shift

is much too small,

2. Local unclear fields.

Unquestionably the nucleus is not truly a point centre offeree, so that the

Coulomb potential 2e2
/r, cannot be correct in the limit as r~&amp;gt;0. .Experi

ments on scattering of a-particles by nuclei have shown that there are

departures from the Coulomb law in the neighbourhood of r~ 10~12 cm, and

various theories of nuclear structure agree in assigning to the size of the

nucleus a linear dimension of this order of magnitude. Calculations of the

effect on atomic spectra ofsuch departures from the Coulomb law have been

made by Racat 3 Breit, and Rosenthaif

Nothing very definite is known about the nature of the departure from

the Coulomb law. Racah makes the simple assumption that the nucleus is

spherical in shape and that the potential inside the nucleus is constant and

continuous with the value at the boundary of the nucleus. Rosenthal and
Breit work with a model having a discontinuity at the nuclear boundary

corresponding to the potential barrier model used in current theories of

x-particle disintegration. The calculations of Rosenthal and Breit are

carried through using the Birac equations of the relativistic theory (55
).

In the first work it turned outs on assuming that the radius of isotopic

nuclei varies as the cube-root of the atomic weight (constant nuclear den

sity), that the theoretical values of the isotope shifts of spectra ofthallium,
lead. mercury were considerably larger than the experimental values.

One of the most uncertain elements entering into the calculations is the

value ofthe atomic eigenfunetions at the nucleus. In the later paper, Breit

shows that much of the discrepancy can be removed if a semi-empirical
formula for 2

(Q) due to Goudsmit is used, instead of the values used in the

first paper.

Data on differences in spectra associated with different isotopes ofheavy

* XAUAOKA and MISHXXA, Sci. Pap. last, Phys. Chem. Res. Tokyo 13, 293 (1930).
t RACAH, Xature 129, 723 (1932);

ROSESTTHAX and BBEIT, Fiys. Rev. 41, 459 (1932);

BRER, Fhys. Rev. 42, 343 (1U32).
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elements is being accumulated rapidly at present and may in the future prove
an important source of knowledge about the nucleus, but at present not

much more can be said than that reasonable assumed departures from the

Coulomb law in the neighbourhood of the nucleus can account in order of

magnitude for the observed effects.

3. Nuclear spin in one-electron spectra.

The effects considered in the two preceding sections do not produce a

splitting of the levels of a single atomic species and so can only give rise to

a hyperfine structure when several isotopes are present. But such structure

is observed in atoms having no isotopes, notably bismuth, so some addi

tional hypothesis is needed for description of this structure. This was sup

plied in 1924 by Pauli,* who postulated that the nucleus itself may have a

spin angularmomentum and an associated magnetic moment. It is supposed
that a nucleus ofgiven Z and 31 always has the same spin, denoted by J, but

that different kinds ofnuclei have different spins. This hypothesis ofnuclear

spin has also proven ofgreat importance in the theory of molecular spectra,

so that it is now an indispensable part of atomic theory.

With nuclear spin postulated, we need in addition to know the term in the

Hamiltonian corresponding to the interaction of the nuclear spin with the

electronic structure. This was first obtained from the classical picture of a

nuclear magnetic moment whose energy in the magnetic field produced by
fche electronic structure depends on the orientation of the nucleus relative

to that field. This brings up the question of the magnitude of the nuclear

magnetic moment. It is difficult in the present state of knowledge of

nuclear structure to say anything about this that is very definite. For an

3lectron the magnetic moment is e/ftc times the angular momentum, so it

was natural to suppose that for a proton the magneto-mechanical ratio

EFOuld be efMc or ft/Jf
= 1/1838 times as great. But this appears not to be

bhe case according to the recent experiments of Stern, Friseh, and Ester-

mann3f in which the magnetic moment of the proton was measured by a

molecular beam method on molecular hydrogen. The result was a magnetic
noment 2-5 times larger than (e/Jfc)(Jft). That the spin of the proton is \H
a known from the band spectra ofE2 . This unexpected result for the proton
s made certain by a more direct method, developed by Rabi, Kellogg,

rnd Zacharias 3| which uses atomic instead of molecular hydrogen.

Somewhat surprising is the fact that those nuclei which are supposed to

jontam an odd number of electrons also have magnetic moments of this

* PABU, NatorwiBB. 12, 741 (1924),

f FKESCH and STEIC*, Zeits. fur Phys. 85, 4 (1933);
ESTEBMASW and STEBN, ibid. 85, 17 (1933).

{ KABI, KELLOGO, and ZACHABIAS, Phys. Bev. 46, 157 (1934).



422 THE xrcLErs rs* ATOMIC SPECTKA 318

size; this makes it appear that a nuclear electron is quite different from

a free electron or one in the extra-nuclear structure. This is just one of the

properties of nuclei wMch lends support to the never view that nuclei are

composed wholly of protons and neutrons and do not contain any electrons.

The first quantitative theory of the interaction of the nuclear magnetic

moment and the outer electrons is due to Fermi and Hargreaves.* The

magnetic moment M of the nucleus gives rise to a field described by the

vector potential I

^ =
^Hxr. (I)

Since the magnitude ofthe nuclear spin is constant in all states ofthe system,

it not to be explicitly mentioned but we do need to introduce

J/j , the z-component of nuclear spin, as a coordinate and quantum number.

Then, since M is proportional to the nuclear angular momentum I, that is

(2)

where gs is analogous to the Lande ^-factor in the theory of the Zeeman
effect, it follows that the components of M are represented by three non-

commuting matrices whose rows and columns are labelled by the values of

Jlj . Fermi handles the one-electron problem with Dirac s equations ( 55
),

including the interaction with the nucleus through the vector potential

given by (1).

We not reproduce the calculations in detail. It is easy to see that we
have here another of vector coupling. We start with a scheme in which

tieJ of the outer electron and the I of the nucleus is known. The resultant

Fis the vector sum of these two and we have to trans-

from a scheme ofstates in whichJP andP are diagonal to one in which

F2
is diagonal. All this is exactly whatwe have been through in studying the

coupling of S L to form J.
Fermi the s

$, terms of the one-electron ns configurations are

spit into two levels, the displacements from the unperturbed positions

being

(3)

Here /%= e /2/tf is the magnetic moment ofthe Bohr magneton.M the actual

magnetic moment of the nucleus and ^2
{0) is the value of the normalized

5-eigenfunction at the nucleus. The factor i belongs with an F value of

I-rf and the other with F=I~|, For positive M, the level with JT= I- J

* fur Piys. 0, 320 (1930);
HAJBGXEAVBS, Proc. Roy. See. AIM, 568 (1029); A127, 141, 407 (1930).
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is lower In energy than the other. Positive M corresponds to the magnetic
moment parallel to the angular momentum as If the magnetic moment were

produced by rotation of the positive charge distribution of the nucleus.

Likewise Fermi finds that the 2P, level is split into two levels Inthe sameway,
the amount ofthe perturbation being given by (3) with r^ In place of TT^

2
(0).

The 2

Pj
level is split in general into four levels whose J1

values are 1 f,

I |, J-f J, and I-f f , the displacements In energy being

respectively. (For 1=1 there are but three levels, as I f Is Impossible, and
for 1= | there are only two.) The four levels have the same kind ofInterval

rule as with Russell-Saunders terms: the Interval between adjacent levels

is proportional to the larger F value of the pair.

Let us now consider the application of these results to the alkali metals.

Schiller, and Dobrezov and Terenin* find In 2fal that each of the D-lines

consists oftwo components with a separation of G-022A. For potassium the

corresponding structure Is either absent or very much narrower,f In Rbl
the second line of the principal series shows doubling as in sodium with a

component distance ofO02QA4 Jackson studied the first three lines ofthe

principal series of Cs I and found that each component In all three lines

showed a separation of 0-300 cm&quot;
1 and that the two hyperfine components

were of about equal Intensity.

These observations are in accord with the view that the 2$ , level has been

doubled by interaction with the nucleus and that a splitting of the
2P levels

is negligible. From the splitting one cannot find the value of I, since In any
case the 2

S^
level would be split into two levels.

That the nuclear spin ofNa I is equal to f is shown by the measurements

of Rabi and Cohen by a modification of the Stem-Gerlach experiment, by
Joffe and Urey from alternating intensities In the Na2 bands, and by the

recent accurate measurements of the hyperfine structure Intensities by
Granath and Van Atta.

j|
We thus have three different methods leading to

the same value in the case of this nucleus. The calculation of the nuclear

magnetic moment from the observed splittings Is of course a much more

difficult and uncertain matter. The value of / is inferred from hyperfine

*
SCETOLER, Natorwiss. 16, 512 (1928);
DOBBEZOV and TEBESX^, ibid. 16, 658 (1928).

f ScHiiLEB and BBUCK, Zeits. ffir Phys. 58, 735 (1929).

f ECLEPFOV and GBOSS, Naturwiss. 17, 121 (1929).

JACKSON, Proc. Boy. Soc. A121, 432 (1928).

H BABI and CoBm, Hrys. Rev. 43, 582 (1933); 46, 707 (1934);
JOFFE and UBEY, ibid. 43, 761 (1933);
GBAJJATH and VAX ATTA, ibid. M, 935 (1933).
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structure intensities by an application of the sum rales, for evidently the

theory of Russeil-Saunders multiple! intensities (29
) Is applicable here if

we write F for J, J for S9 and I for L. Thus in the splitting of a line ending
on the ZS level, the two components have an intensity ratio of /:

(
I -f- 1), this

being the ratio of the two values of ZF -f 1 for F= I- J and JF = / + .

We not undertake a detailed review of the theory by which the

nuclear magnetic moment is calculated from the data. For one-electron

spectra in particular this has been most carefully discussed in a paper by
Fermi and Segre.^ This paper includes a compilation of known values of

nuclear moments, as does an independent paper by Goudsmit.f
Table I18 is based on these two compilations and gives the values of the

moment in unite el
(

21fc from each paper, so that the reader may
for himself the degree of consistency obtainable by different workers

in the of development of the theory.

TABLE Ils. Unclear spins and magnetic mommis.

4. The iiyperfine structure of two-electron spectra.
The most thoroughly worked out case of hyperfine structure wliere there

is more than one electron outside closed shells is that of the ls2s^S and
* and SEsai, Zeits. fur Pfays. 82, 729 (1933).
t GOO&amp;gt;SMITS Fhys. Rev. 43, 636 (1933).
f Rrom GEASATH and TAN ATTA (foe. dL).
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Is 2p
3P terms of Li II.* The hyperfine structure ofthe multlplet due to the

combination of these terms is of particular interest because it is comparable
in magnitude with the ordinary level structure of LiH due to spin-orbit
interaction. The theory is in good accord with experiment! when the value

of / for Li7
, the most abundant isotope, is taken to be f . This value is in

accord with that from the spectrum of the molecule Li2 .J

We shall not give the details of the calculations. These are based on the

use of a law ofinteraction of the electrons with the nucleus as used by Fermi
for the one-electron problem, together with use of appropriate two-electron

wave functions. For the 3Sl level, Breit and Doermann find that the

perturbation due to interaction with the nucleus is

i-oel^M^oH-i, -f, i) (i)

for the three components F= f 5 f , and f respectively. This counts only the

interaction of the Is electron with the nucleus, 0(0) being here the value at

the origin of the Is wave function.

The 3P levels are split according to the laws ofvector addition of angular
momenta: 3P is not split,

3P1 becomes a group f
of three levels with F= | 3 f and f and

3P2 a group
3p

of four levels with .F= |, f , f and f. An energy
level diagram (after Giittinger and Pauli) is given
in Fig. I18 which shows how the magnitude of the

hyperfine structure in 3Pis related to the ordinary j

2

level intervals. The factthat they are comparable

implies that the non-diagonal matrix components
of the nuclear interaction which connect different

implies that the non-diagonal matrix components ^ H r

3 % . _
levels of 3P are important. These were considered

2

|
in the calculations of Giittinger and Pauli.

The experimental data areingoodgeneralagree
ment with the theoretical calculations, although ^_
there are discrepancies in the relative intensities.

3
Pf f

The detailed interpretation of the observed

hyperfine structure for the case of more than one Fig. i18 . Hyperfinestructure

electron outside closed shells is complicated bythe
of the **P terai ** Li]L

necessity of considering the state in intermediate coupling (Chapter xi) and

* GtJmKGEB, Zeits. fur Phys. 64, 749 (1930);
GOTTES-QEB and PAULI, ibid. 67, 743 (1931);
BBEIT and DOEKMAIW, Phys. Rev. 36, 1262, 1732 (1930).

f SCH-ULKB, Zeits. ffip Phys. 42, 487 (1927);

GRADATE, PJiys. Rev. 36, 1018 (1930).

J WUEM, Zeits. fur Phys. 58, 562 (1929);
HABVEY and JUNKETS, Phys. Rev. 34, 1286 (1929); 35, 789 (1930).
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also the Influence of configuration interaction (Chapter xv). The effect ofthe

Intermediate coupling has been considered in detail by Breit and Wills,*

while the importance of considering the interaction of configurations in this

connection has been stressed by Fermi and Segre.t At present not enough
is known about configuration interaction to make possible quantitative
allowance for its effects, but Fermi and Segre show that qualitatively its

effects account for a number of observed features of the hyperfine structure

Trhich are otherwise without explanation.

The work ofBreit and Wills is in extension ofthat ofGoudsmit, J who first

gave a general discussion of the interaction with the nucleus in the case of

complex spectra by vector-coupling methods. Their developments agree

fairly well with, experiment but there are many outstanding discrepancies,

indicating the need for further refinements of the theory.
In Hg A1II occur in which the hyperfine structure is com

parable with the ordinary spin-orbit and electrostatic separations. This

necessary more accurate calculations of the nuclear perturbation of

the levels. Empirically effects and their nature were recognized by
Paschen.f They have been discussed in detail by Goudsmit and Bacher

j

with satisfactory results.

5. Zeeman effect of hyperfine structure.

We shall not give a detailed account of the results which have been ob
tained for the perturbation by a magnetic field ofthe structure due to nuclear
interaction. Tie work is extremely important as indicating the essential

correctness of the nuclear-magnetic-moment picture, but presents no new
theoretical problems. In the ordinary theory ofthe Zeeman effect ( I16

) the

from the simple Lorentz theory arise because of the different

values ofthe magneto-mechanical ratio associated with the vectors L and S.
We have a situation here. For fields such that the ordinary Paschen-
Back effect is negligiblewe have a magneto-mechanical ratio ofthe electronic

represented by g(J) where this is the Lande g factor ofthe level in

question, Associated with the nucleus is a magneto-mechanical ratio about
I0~3 as great so the direct interaction of the nucleus with the external

magnetic field is negigible.
A direct application of the formulas of Chapter in then shows the split

ting of a given hyperfine level to be governed by g(J) of the ordinary level
to which the level belongs multiplied by the factor (I0

3
2a) which gives the

* BBMT aad Wnxs, Pfcys. Rev. 44, 470 (1933).
f FXEMI and Src&i, Zeite. f3r Phys. 82, 729 (1933).
t Gorasnr, Piijs. Rev, 37, 663 (1931).

Pj.SH!3rs Sizber. PTCIBBB. Aiad. 1832, p. 502.
II GOUBSMZP and BACHES, Pliys. Bev. 48, 894 (1933).
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natrix component of Jz in a state labelled by precise values ofF2 and Fz .

Ihat is, the g value for a state ofresultant angular momentum F composed
of electronic J and nuclear / is

2F(F+i)
This result was first obtained by Goudsmit and Bacher* from vector-model

3onsiderations.

Just as in the discussion of 516
, the difference in the magneto-mechanical

ratio ofthe vectorsJ and /means that strong magnetic fields can produce a

breakdown ofthe coupling ofJ and 1. TMs is the Paschen-Back effect ofthe

tiyperfine structure. Experimentally and theoretically this phenomenon
has been carefully studied by Back and Goudsmitf for Bi. They find good

agreement for I=f at field strengths corresponding to various stages ofthe

transformation of coupling schemes. The magnetic transformation of the

hyperfine structure in thallium has been investigated thoroughly by Back
and Wulff.i

* GOUDSMIT and BACHEE, Zeits. fur Phys. 86, 13 (1930).

f BACK and GOUDSMIT, Zeits. fur Phys. 47, 174 (1928);

ZEEMAN, BACK, and GTOUDSMIT, ibid. 66, 1 (1930).

J BACK and WULFF, Zeits. fur Phys. 66, 31 (1930).
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UNIVERSAL COXSTAXTS AXD
XATURAL ATOMIC UXITS

Measurements in physics are statements of relation of the quantity mea

sured to quantities of like kind which are called units. It is customary to

build up the system in such, a way that the unit of any kind of physical

quantity is defined in terms of three conventional units of mass, length, and

time. The choice of the basic units for these quantities is wholly arbitrary.

the general order of magnitude in the centimetre-gram-second system being

such that the numerical measure of quantities occurring in ordinary labora

tory experiments is of the general order of unity. Thus the Telocity of light

in the cgs system is 3 x 1010 cm sec*1 . The centimetre and second being so

chosen that 1 cm sec&quot;&quot;

1 is ofthe order of velocities ofcommon experience, the

bigness of the number measuring velocity oflight on this system is simply a

statement that velocities of common experience are very small compared
withthat of light.

There is, therefore, nothing especially fundamental about the cgs basis.

Its basic units are of convenient magnitude for common laboratory ap

paratus, so ultimately the foundation is anthropomorphic since laboratory

apparatus is built and designed on a scale convenient for manipulation and

observation by a human observer. To recognize this fact is not to deplore it.

Certainly the egs system is convenient for description of the macroscopic

apparatus which provides the refined sense-data of physics. But the fact

shows us clearly that a metric resting on such a basis will probably not

provide units of convenient size for dealing with another branch of physics
like the theory of atomic structure.

THs is in fact the case. The basic universal constants of atomic theory
have values which are very large or very small compared with unity. For

example*:
Electron eiiarge : - e= 4-770 x lO&quot;

10
gt cmi sec&quot;&quot;

1
;

Quantum constant: 1= 1*043 x 10~S7
g cm2

see&quot;
1
;

Electron mass : ^L= 9-035 xlO~ffl

g;

Light velocity: c= 2-&979B x 1C10 cm sec&quot;
1
.

Thesegreat powers often are rather inconvenient in theoretical calculations.

Therearetwoways ofavoidingthemwhich mightbe adopted. One is theway
which tie metric system has already adopted for extending itself to larger

* We use the values ofthe universal constants as given by BIRQE after a critical surrey ofall the
relevant data: Rev. Mod. Phys. 1, 1 (192% Phys. Rev. 40, 228 (1932). For later modifications see

BIBGE, Phya. Bev. 43, 211 (1933); MICHELSON, PEASE, and PBABSON, Science 81, 100 (1935).
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or smaller units, namely to choose another system of fundamental units

related to the metric system by conversion factors which are powers of 10.

By taking as our units of mass, length and time

lO-^g, 10-* em, and 10-&quot; sec,

the new electrostatic unit of charge becomes 10~9
giem*sec~

1
; so in this

system the electronic charge has the value 0*4770. Similarly the new unit

of velocity is 109 cmsec-*1
, and of angular momentum 10-27gcm2 sec-1

3 so

the velocity of light and the quantum constant have the numerical values

29-9796 and 1-043 respectively.

For theoretical purposes, however, it is still more convenient to introduce

a system of units in which certain of these universal constants are set equal
to unity. From this standpoint the numerical values of the universal con

stants become the numerical conversion factors which connect this system
with the ordinary c g s units. Quite a variety of such systems have an equal
claim to use so far as general convenience is concerned. Thus it is a matter

ofarbitrary choice whetherwe set h or Ji equal to unity. This kind ofarbitrary
choice merely alters the place where the pure number 77 appears in the

calculations and is analogous to the difference between the Heaviside-

Lorentz units and the older set of electromagnetic units. Another arbitrary
element lies in the fact that there are only three fundamental units at our

disposal,so that it is not possible to assign the numericalvalues ofmore than
three ofthe universal constants different systems arise according to which

choice is made in this respect. There is not much point in debating which of

the choices is most convenient. As it happens one particular choice, recom

mended by Hartree3
* has already been quite generally employed in theo

retical work, so we adopt that one. Hartree s atomic units are such that e, JJL

and ft have each the numerical value unity. Denoting by a and r the Hartree

units of length and time respectively this means that

From this standpoint the numerical values of the universal constants e, ft

and \L given in the c g s system are the conversion factors by means of which

quantities expressed in Hartree s system are to be expressed in the egs
system. Thus an angular momentum expressed as xK in the Hartree system,
where x is a pure number, is expressed as (1-043 x 10~27

)a:gcm
2

sec&quot;&quot;

1 in the

cgs system. Therefore the length expressed as la in the Hartree system
is expressed as (1-043 x 10~27

)
2
(9-035 x 10~2S

)-
1
(4-770 x 10~10)-

2 cm, which

works out to be la= .528 x 10
_8cm ^

* HA&TBEE, Proc. Camb. PMl. Soc. 24, 89 (1926).
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Similarly the value of T in the cgs system is

IT= 2-41 9 xIQ-17 see.

From these basic conversion factors the value of the Hartree unit of any
derived quantity in the cgs system is readily found. Thus unit velocity is

1ai-1= 2- 1 8 x 108cm sec*1 ;

hence the velocity of light has the value

c= 137-29 ar 1
.

The reciprocal of the pure number which gives the value of the velocity of

light in these units is known in the theory as the fine structure constant.

This is usually defined by the equation
a = e2/cl.

It appears,, for example, as a parameter of the relativity-spin structure of

the hydrogen spectrum in Chapter v. Another important parameter of

atomic theory is the mass of the proton, which is

11=1838-3/1.

The fact that the numerical magnitudes ofc2 and ofJI in this system ofunits

are both large compared with unity is of fundamental importance for the

theory. The largeness of c2 is what makes the relativistic corrections small

and the largeness of 31 makes it a good approximation to treat the nucleus

as a fixed centre of force.

Aside from the fact that e } Rs and p. have simple numerical magnitudes in

this system of units, the other units have simple physical interpretations in

the theory. Thus unit length is the radius ofthe first orbit in Bohr s theory of

hydrogen for an infinitely massive nucleus, and unit velocity is the velocity
ofthe electron in this first Bohr orbit. Unit energy is the potential energy of
the electron in the first Bohr orbit and hence the ionization energy is half a
Hartree unit. Numerous other examples are to be found in the table in this

appendix.
We shall not discuss the precision with which these quantities are known

in terms of the cgs system other than to say that it is quite generally that
associated with a probable error somewhat less than 0-1 per cent. The
quantity whose relation to the cgs system is known most precisely is the
combination aa-1

. The combination aa-1/^ is known as the Rydberg
constant, R. Its value is

R =~ a-1= 109737-42 4- 0-06 cm-1
.

4?r
~

Its relation to the c gs system is thus known to an accuracy of about 6 parts
in 10 million, although the accuracy with which the values of a and of a

separately are known is much less. The theoretical energy levels of atoms
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are given in terms ofthe Hartree energy unit and the parameters like a, p/M,
the atomic number Z, and the quantum numbers labelling the particular
level in question. Ofthese Z and the quantum numbers are integers exactly,
so there is no uncertainty in their numerical values. The effects of oc and ft/If
on the energy are usually in the form of small corrections, so we are not

greatly hampered by the uncertainty in their values in making com
parisons between theory and experiment. In using the energy levels to

predict the wave-numbers of spectral lines, the wave-number equivalent of
the energy given by Bohr s relation, E^Jic^m what enters. As the wave
number equivalent to one Hartree unit of energy is 2R 5 it follows that the

principal factor needed for passing from Hartree units to cgs units is the
one known with the greatest precision. The precision of knowledge in R is

much greater than the accuracy attained in the perturbation theory calcula
tions at present, so that the comparisons with experiment are not at all

hampered by the inaccuracy in the Rydberg constant. For that reason we
may express the results of the theory at once in terms of em-1 without

paying attention to the uncertainties in R.

The only other universal constant of interest for spectroscopic theory is

the Boltzmann constant
5 i, which measures the relation between thermal

energy and the thermodynamic temperature scale measured in conventional

Centigrade degrees. As we nearly always express energy in terms of equi
valent wave-numbers in cm-1

, the important conversion factor is not k
itself but A/Ac, which when multiplied by T in Centigrade degrees gives

directly the wave-number equivalent of the energy JcT. This factor has the
value i

j^=
0-698cm-1

deg-
1
.

This is the reciprocal ofthe quantity often denoted by c2 in classical radiation

theory.
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Values of some Important Physical Quantities

Kind of quantity Value in atomic units Value in c g s units

Length:
Radius of first Bohr orbit, a=F t

Shift in X-ray wave-length. by Compion scat

tering through TT, 2, 27roca

(TMs is also the wave-length of y-radiatioa
associated with annihilation ofan electron)

Electromagnetic radios of electron, e
2
/j^c

2 =;x2a

Wave-length of limit of Lyman series, 4ira&quot;
1aH

la
0-0458 a

(0-5282 0-0004} xlO&quot;
8 cm

21-2x10*&quot; cm

Atomic unit, a&quot;
1

Rydbeig constant, R^o
Wave-number of first Balmer line, jf5RH

Hydrogen doublet constant, y*REjlft

Wave-number associated with one electron Tolt

of electron, |i

Mass of proton, if

Time:

Time for electron to go (Sir)-
1 revolutions in

first Bohr orbit, r

Mean life for 2p-! transition in hydrogen

Velocity:

Speed of electron in first Bokr orbit* ar&quot;
1

Speed of light, ar^r&quot;
1

Momentum:
Of electron in first Bohi orbit, /lar&quot;

1

Basic quantity jn
of relativistic theory

A ngidw :

Basic quantum unit, fcs/xaV&quot;
1

Planck constant, 2d!=&

Atomic unit, IOL*T-*= ie*, I
2= 2Rfe, twice the

ionization energy of hydrogen with infinite

nacSe&r mas
Energy equivalent of electron mass,

Force:

Force of attraction toward nucleus on electron

in first Bohr orbit, e*/a
a

Ekctrit ctergc:

Atomic unit, e, negative of charge on election

Potential:

Potential of electron s field at atomic unit

distance, e/a

Eltciricfidd:

Field strength at atomic unit distance from

electron, e/a
8

Ekdrie mmmt:
Moment of dipole formed by hydrogen atom in

first Bohr orbit, ea

Magnetic fdd:
Atomic unit, ^sC^f~&quot;

1

Field at nncleos doe to motion of electron in

first Bohr orbit,

Magnetic momeM:
Atomic unit, i^&^
Bohr magneton, ei/2jiC=|

5-31

1722 a

5-81 xir* a-1

0-807 x!Q-* a-&quot;

1

l-ftSxlO- ar1

4-281 xKT5 a 1

6-62xi07 r

137-29 jua-T
1

18859 jiaV*

7-283

2-80xiO-13 cm
910xlCT8 cm

1-893 xlO8 cm-1

109737-420-06cmrl

15233cm-1

0-3636 iO-OOOecnr1

81063cmrl

(9-035 0-010} xlO^g
1-661 xlO-g

2419 xir17 sec

l-6xlOrfleo

2-18 xlO8 cm sec-1

(2-99796+ 0*00004) x I010 cm sec-1

1-966 xl(r19g cm sec&quot;
1

2-70 xlO~17gem sec&quot;
1

1-043 x!0~27gem2
sec&quot;

1

6-547 xlO~27gem3
sec&quot;

1

f
4-304 xlO-&quot;

11
erg

j
=:219474-84 cm-1

ic:27-07 electron volt

8-10 xir7
erg

8-19 xlO~a dyne

J O-O

[27-2 volts

(17-1 xlOSgcm- sec-1

151-3
x 10s volt cnr1

2-52xlO-18 esTicm

17-1x10* gauss
1-245 xlO5

gauss

2-52 xlO^18 erg gauss&quot;

1

0-9174 x lO&quot;
20
erg gauss&quot;

1
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Allowed levels mjj coupling
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method of obtaining, 190, 216
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Almost closed shells, Chapter xn, Chapter

xm
Angular momentum, Chapterm
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commutators, 46

matrices, 48
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2
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use of operators to get Russel-Saunders

eigenfunctions, 226
vector addition, 56, 73
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Average, see Mean
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Characteristic values, 14
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Commutator, 14, 25, 43
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Configuration, 113, 168

interaction, Chapter xv
normal, of elements, 333

selection rules, 236

Continuous eigenvalues, 20
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168
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Critical potentials, 5
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8 function, 20
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Diagonal matrix, 19
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Dipole moment
electric, 85, 90
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Dipole radiation, 90

Direct integral, 173
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Doublet intervab

alkalis, 144

X-ray levels, 321

Dynamical equation, 26

Eigendifferential, 22

Eigen-^r s, eigenfunctions, eigenstates, 14, 21

almost closed shells, 284

jj coupling, 262
Russel-Saunders terms, Chapter vin

simultaneous, 17

Eigenvalues, 14

continuous, 20

Electromagnetic theory, 83

Electron spin, 8, 54

Electrostatic interaction, 114, 141, 159, 1*4,

179, 259, 295

Equivalence degeneracy, 160

Equivalence, dynamical, of the electrons,

162

Equivalent electrons, see Allowed levels, and

Two-electron configurations
Even states, 185

Exchange integral, 173

Exclusion principle, 9, 166

see Equivalent electrons
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/value, 108
in alkali spectra, 147
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HamDtonian operator, 25, 158, 211
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normal states, 6, 345
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experimental results* 137
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spin-orbit interaction, 123
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Hyper&ie structure, 418
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Intervals, doublet, 144, 321
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nlx configurations, 208
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Isotope effect, 418, 420

J file, 248
sum rale, 247, 278

J group, 278
sum rule, 278

J-group file, 2S1
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jj coupling, Chapter x, 287, 291

Lagnerre polynomials, 114
Lande interval rale, 193
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Laporte rule, 236
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Lynian series, 4, 6, 137

Magnetic-dipole radiation, 86, 93, 283

Magnetic moment, 86, 90
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Mean value of an observable, 15
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qnadrupole, 252

snpermultiplet, 245
see Inverted, Normal, Strength

Multiplicity, 189

selection rule, 237

Natural excitation, 97
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Nucleus
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magnetic moment, 422, 424

spin, 421, 424
Numerical integration of the radial equation,

344

Observable, 13
allowed values, 14, 15

complete set, 18

conjugate, 14
realitv condition, 14

Odd states, 185
One-electron spectra, Chapter v, 183
Orbital angular momentum, 50, 113
Oscillator strength, 108
in alkali spectra, 147

Parabolic coordinates, 398
Parents of a term, 216, 276, 303

Parity operator, 186
selection rule, 236, 237

Paschen-Back effect, 152, 388, 390
in hyperfine structure, 426

Paschen series, 4, 6, 137
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Pauli exclusion principle, 9, 166
see Equivalent electrons

Pentad, 217
Periodic system, 327

Periodic table, 332, 333
Permutation operator, 162

Perturbation, 30
caused by a single state, 37

theory, 30, 34, 35
Perturbed series, 367

Phases, choice of, 48, 52, 66, 67, 123, 270, 292
Phases in the matrix of S^, 277
Planck s constant, 5, 432
Poisson bracket, 25

Polarization, 89
of dipole radiation, 91
of quadrupole radiation, 95

Stark effect, 400
Zeeman effect, 154, 386

Polyad, 217, 245

Positron, 125
Potential

atomic unit, 432

retarded, 84

scalar, 83

vector, 83, 149

Principle of spectroscopic stability, 20

Probability interpretation of (F j ), 24

Proper values, 14
Proton

magnetic moment, 421

mass, 432

Quaclrupole moment, 85, 90

Quadrupole radiation, 93, 99, 282

line strengths in quadrupole multiplets, 252

Zeeman effect, 395

Quantum mechanics, method and laws,

Chapter n
Quantum number, 18

effective, 142

radial, 131

total, 113

Radial functions, 112, Chapter nv
for hydrogen, 114

Radiation theory, Chapter iv

classical electromagnetic theory, 83

correspondence principle for emission, 87

dipole-radiation field, 90

of Dirac, 81

quadnipole-radiation field, 93

Raman effect, 103

Rare-gas spectra, 301, 315

Real observable, 14

Relativistic theory, 125

Relativity correction, 117, 125

Representations of states and observables,

15,21
Ritz combination principle, 3, 5

Ritz series formula, 143, 367

Ritz variation method, 345

Russell-Saunders case, Chapters vn, vm, ix

Zeeman effect, 380
see Allowed levels, Intervals, Spin-orbit

interaction, Strength

Rydberg constant, 4, 6, 115, 137, 430, 432

Satellites, 240, 277

X-ray, 323
Scalar potential, 83

Scattering of radiation, 103

Sehrodinger operator, 21, 27

Schrodinger representation, 21

Scbrodinger s equation, 23, 26

Screening, 159
in X-ray levels, 320

Secular equation, 29
Selection rule, 60

angular momentuma 61, 67, 96

configuration, 236

multiplicity, 237

parent terms, 245

parity, 236, 237
Self-consistent fields, 354, 358, 362

Shell, 168
almost closed, 295

closed, 177

Spectra, 1

banded, 2

continuous, 2

line, 2

Spectroscopic stability, 20

applied to multiplet strengths, 249

Spectroscopy, 1

Spectrum of an observable, 14

Spherical harmonics, 52

Spin, 8, 54
Pauli matrices, 55

Spin-orbit interaction, 120, 159

almost closed shells, 299, 306, 312

in helinm, 211

intermediate coupling, 266, 268

jj coupling, 257
LS coupling, 193, 195, 209

perturbation of doublet intensities, 376

spin of one electron orbit of the other, 273

Stark effect, Chapter xvii

State, 12, 97, 122

Stationary states, 5, 26
Statistical interpretation, 24

Statistical method of Fermi-Thomas, 335

Strength (of a spectral line), 98, 100

alkali spectra, 147, 376

almost closed shells, 316

dipole multiplets, 237

forbidden lines, 282

hydrogen, 131

intermediate coupling, 275

jj coupling, 264

many-electron jumps, 375

quadrupole multiplets, 252

Russell-Saunders case, Chapter ix

Stark effect, 401, 411
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Strength, (conf.)

X-rays, 322
Zeemaa effect, 386

Sum rales, 71, 108, 238, 247

^-permanence rule, 390

g-sam rule, 385

J file, 247, 279

J group, 278

/-group file, 281

Supermultiplet, 245

Symbolic algebra of states and observables,

12

Symmetrizer, 165

Symmetry of $, 164

System of terms, 237

Term, 122, 189

Term energies, 191

Term intervals, see Intervals

Term system, 237

Term values, 3-6

Trace, 19

Transformation coefficients or amplitudes, 18

for vector addition, 73

Transformations betveen different coupling

scliemes, Chapter xn
Transition array, 244

Transition probabilities, 79, 0$, 100, 109

in Can, 148

in hydrogen, 136

in &quot;nebulram*, 283

Triad, 217

TVo-electron atoms, ionization potentials,

346,348
Two-electron configurations

absolute term intervals, 220

allowed levels, 232, 263

Two-electron configurations (cont.)

eigenfunctions, 229, 231

hyperfine structure, 424

interaction of the spin of one electron with

the orbit of the other, 273

line strengths, 246, 264

matrix of spin-orbit interaction, 267

transformation from jj coupling to LS

coupling, 294

Ultra-ionization potentials, 373

Unitary transformation, 18

Universal constants, 428, 432

Valence electron, 183

Vector addition of angular momenta, 56, 73

Vector coupling, 56

in antisymmetric states, 213

method for Russell-Saunders eigenfunc

tions, 228

model of atom, 8

Vector potential, 83

Vectors, non-commuting, 43

Wave-number, 3, 5, 7, 432

Wentzel-Brilouin-Krarners approximation,
339

Width of spectral lines, 82, 109

X-ray spectra, 316

line strengths, 322

satellites, 323

Zeeman effect, 8, Chapter xvi

in hyperfine structure, 426

in one-electron spectra, 149

Zero-order scheme, 167, 287
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Backlin, 325

Baker, 338

Bakker, 396

Balmer, 3

Banerji, 132

Bartlett, 229, 264, 282, 358, 418

Bateman, 84, 131

Bechert, 132

Becker, 415

Bethe, 132, 140, 351

Beutler, 368, 373, 374

Birge, 138,428
Black, 283, 358, 359, 362

Blaekett, 125

Blair, 394

Blaton, 256

Bocher, 17, 28

Bohr, 4, 5, 9, 87 et seq., 327, 401

Born, 10, 28, 61

Bothe, 104

Bouma, 394

Bowen, 146, 254, 282

Boyce, 282

Breit, 105, 126, 147, 211, 349, 420, 425,

426
Brickwedde, 138

Brillouin, 37, 339, 355

Brinkman, 97

Brown, 358, 419

Briick, 423

Burger, 141, 238, 387

Bush, 337, 358

Cady, 200, 203

Caldwell, 337, 358

Campbell, 396
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Chaffee, 138

Chalk, 402

Cohen, 423

Compton, 372
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Coster, 326

Courant, 16

Darwin, C. G., 56, 104, 128, 131, 149,

390

Darwin, K., 149, 157, 390

De BrogHe, 7

Debye, 81

Dewey, 405, 415

Dirac, 7 et seq., Chapter n, 55, 60, 61, 81, 103,

124 et seq., 192,240

Dobrezov, 423

Doermann, 425

Doi,402
Dorgelo, 238 et seq.

Drayvestyn, 326

Dnane, 322

Dunn, 358

Eckart, 115, 131, 349, 352, 418

Einstein, 4, 79

Mason, 240

Engwicht , 245

Epstein, 6, 131, 397 et seq.

Esmarch, 104

Estermann, 421
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Grotrian, 416
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