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Discovering by C. Schineir (1630) 2/26

� J. Fabricius �Narration on Spots
Observed on the Sun and their
Apparent Rotation with the Sun�.

� Christopher Scheiner (�Rosa Ursine
sive solis�, book 4, part 2, 1630)
was the first to measure the equa-
torial rotation rate of the Sun.



Helioseismology: angular velocity profile 3/26

� Latitudinal shear in the solar con-
vection zone. Radial shear near the
bottom and near the top.

� In equatorial region the angular
velocity increase outwards.

� Almost steady. Though, the short-
term 11th year variations about
5m/s and and the long-term vari-
ations ~50-100m/s.

� There are indications for strong
DR during Mounder minimum



Meridional circulation (see, Chen & Zhao 2024) 4/26



Conservation of angular momentum 5/26

The mean-field equation:
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Effects of the turbulent flows and magnetic fields:
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Let us consider a steady state with hBi=0, then
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where, L= r2sin2
. So, if T̂ij=0, then ��(hU i �r)L=0, i.e., in absence of turbulent
stresses MC streamlines = angular momentum contours. This is not the case of the Sun!



Angular momentum profile 6/26



General scheme 7/26



Anisotropic heat transport 8/26

The large Reynolds number limit. Consider the forced turbulence
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Let us divide the flow into sum along and perpendecular to the rotation axis:
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Assume that in the background turbulence (without global rotation) is isotropic, hu?
(0)2i=

huk
(0)2i. Then
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Consider intensity of turbulent flows, hu?2 i and huk2i under effect of the global rotation:
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Anisotropic heat transport 9/26

The mean-field heat-transport equation:
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The effect of turbulent convection:

Fi
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Here, I show the results of Pipin (2004):
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Here, �= jhBij/ 4���hu(0)2i
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, and 
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 is the Coriolis number.



Anisotropy �k/�?, for large � and 
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Turbulent angular momentu transport 11/26

We have to solve:
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To determine

T̂ij = huiuji¡
1
4���

(hbibji¡ �ijhb2i)

This can be done using the FOSA (Kitchatinov, Ruediger & Pipin, 1993,1994,1996,2004)
or using the � approximation (Kleeorin & Rogachevskii 2018, this theory is incomplete)



A general expression for T̂ 12/26

Application the mean-field hydrodynamic framework leads to the
Taylor expansion in terms of the scale-separation parameter, `/La:
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It is a sum of turbulent pressure, the non-dissipative (generation)
momentum flux and eddy viscosity is a forth-rank tensor which dis-
sipates the large-scale shear.



Azimuthal stresses and gyroscopic pumping 13/26

The correlation ��huru'i is the angular momentum flux in radial direction, i.e.,
the azimuthal force along the radius, and ��hu�u'i is angular momentum flux in
meridional direction.

Julia

Here, we apply azimuthal force in ver-
tical direction, so it an example of
Stressz'. On the Sun there is a sim-
ilar process which pumps the angular
momentum to equator. Gyroscopic
pumping (Miecsh 2008)



General expression for � effect (Ruediger 1989) 14/26

We have huiuji=�ijk
k, consider the case of slow rotation, i.e., we
can keep the terms order of 
0 and 
2 (the even power!). From the
symmetry and the reflection symmetry we can guess

� �ijk is symmetric about i and j

� �ijk is a pseudo-tensor i.e., 3-rank tensor which change sign
under reflection



General expression for � effect (Ruediger 1989) 15/26

The only 3-rank pseudo-tensor is the tensor of Levi-Chevitta, "ijk
hower it is antisymmetric. If there is another preferable direction,
e.g., stratification, let us ĝ is a unit vector along the radius, then
we can write a symmetric combination:

�ijk=A(ĝi"jnk+ ĝj"ink)ĝn;

For the higher order term the combination is �ijk=B(ĝ �
)(
i"jnk+

j"ink)ĝn; then
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� effect because of rotation and stratification 16/26

The net azimuthal flow (the dashed

arrow) would be induced by

cyclonic-type convection motions
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The rising cells are rotating clockwise (looking

from the pole), the sinking - anti-clockwise.

Also those cyclons which are closer to the pole

are rotating faster. Averaging over the rising

blobs show the retrograde torque. The effect

is proportional to 
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. The falling blobs

gives the accelarating torque. The effect is
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� effect because of anisotropy of convection 17/26



Subsurface shear (Kitchatinov 2023) 18/26

For the stationary stage and the anisotropic background turbulence
we get
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Here, huh2i= hu'2i+ hu�2i. Shear is negative when hur2i> hu'2i= hu�2i.
Also, it is independent of latitude, as in the solar observations.



The meridional circulation 19/26

The meridional circulation is the poloidal part of the large-scale flow which satisfies the
NS equations:
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where e?= r̂cos�¡ �̂sin � is the unit vector perpendecular to the axis of rotation. It is
convenient to define the toroidal vorticity !�= (r�hU pi)'. Then we have
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Sources of the meridional circulation 20/26

Centrifugal force. For example, the
equator rotates faster than the pole the

density force
re?
2

��

is large at the top of CZ equator and small
in polar regions. Therefore it initiate anti-
clockwise circulation to compensate the
redistribution of the angular momentum



Sources of the meridional circulation, thermal wind 21/26

Thermal wind (baroclinic force). It comes from r� 1

��
rP� =r(1

��
)�rP�. Also we

employ the hydrostatic conditionrP�=¡g�� , neglect asphericity, and use the equation

of state:
r��
��

=¡rs�
cp

+rP
�


P
. Finally:

�
r(1

��
)�rP�

�
'

=¡ 1
��2
(r���rP�)'=¡

g
cp

@s�
@�

In rotating convective zone the heat-flux is anisotropic. This resuts to the warm pole
phenomena. Because of huge heat capacity of the SCZ, the effect is screened at the
surface. There, the temperature difference between pole and equator it is no more than
1K.
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The Taylor-Proudman balance 22/26

Note that
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Corresponds to the Taylor-Proudman bal-
ance, when the flow is uniform along the
rotation axis,
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, then, after
curling the above equation, we get
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CZ, the TP balance mean that the angular
velocity does not vary along the rotation
axis. The helioseismology finds:

This means that the SCZ shows devia-
tions from Taylor-Proudman balance.

Note that for the rotating star

r���rP�=/ 0





The basic equations for the large-scale flow 23/26
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The boundary conditions 24/26

The top of the convection zone stress-free and the black-body radiation:
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We put the bottom of the convection zone at rb=0.728R�, Frc+Frrad=
L�

4�rb
2 . The rigid

rotation is at ri= 0.65R�.

The mixing length approximation:
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The thermodynamic reference state of the convection zone is from MESA
code(http://mesa.sourceforge.net/)



The mean-field model 25/26

Results from Pipin&Kosovichev (2019) nonmagnetic case. The angular momentum dis-
tribution results from a balance of the meridional circulation and the turbulent stresses.

The stage of the bulk convection zone is close to the Taylor-Proudman balance. The
deviations from the TP balance are concentrated to the boundaries. At the bottom -
transition to the tachocline and at the top - stress-free boundary conditions exclude the
local TP balance



Summary 26/26


